

Zmotion[®]

2023-2024 Zmotion Technology Product Catalogue

HMI

Vision Motion Controller

Motion Controller

Motion Control Card

ard IO Expa

IO Expansion Module

Company Profile

Zmotion Technology is a national high-tech enterprise, which focuses on motion control technology R&D (general motion control software & hardware products). In Zmotion, there integrates lots of experienced talents from famous companies or institutions, such as Huawei, Huazhong University of Science and Technology etc. At the same time, Zmotion insists self-innovating and collaborating with comprehensive universities to research basic knowledge of motion control. In this way, Zmotion has already become one of the fastest growing industrial motion control companies in China, also it is the rare company that has completely managed core technologies of motion control and platform technology of real time industrial control software.

Now, Zmotion develops many motion control products, mainly including 2-24 axes embedded pulse motion controller, 2-128 axes embedded fieldbus motion controller, 2-24 axes network pulse motion control card, 2-128 axes PCI fieldbus motion control card and 2-240 axes vision motion controller. In addition, Zmotion provides HMI and all kinds of expansion modules.

Zmotion motion control real-time kernel "MotionRT" has developed from MotionRT1 to MotionRT7 in recent 10 years. Before, it only supports real-time motion and real-time RTBasic. Now, it can achieve real-time motion, RTBasic, RTPLC, RTHMI, bus, vision, robot control, G code, etc., and it is compatible with Windows and Linux and tries to realize cross-platform. Moreover, MotionRT7 is the first self-developed Windows motion control real-time soft kernel in China.

Zmotion vision motion controller superimposes some machine visual functions based on motion functions, such as, vision positioning, vision measurement, contour matching and QR code/bar code detection. It extremely reduces barriers of machine vision application. And hardware is highly-integrated into a small volume. For software, easy to develop in one-stop-shop.

The advantage "Easy to Use" mentioned above is for all Zmotion motion control products, except development by all kinds of operation systems and language function libraries, there is one "All In One" industrial application development software "ZDevelop" ("RTSys") made in China, and Zmotion keeps promoting it. Through ZDevelop (RTSys), you can achieve one-stop-shop development on Hmi, Basic / PLC hybrid motion, and machine vision, and it can do real-time simulation, online tracking Debug, etc., in this way, shorten development period, reduce development risk.

All Zmotion software and hardware products strictly obey Huawei "IPD-CMM" development process, which means they are stable and reliable at the telecom level, also with wonderful software and hardware compatibility and expansibility. From quality control, Zmotion products strictly implement the ISO9001 quality management system in market needs, product definition, design development, material supplement, production and processing, customer service, etc. Then it can be known high-quality can be ensured.

Zmotion always aims to do better motion control. Nowadays, our products are widely used in 3C electronics, laser processing, printing, packaging, robot, entertainment, medical devices etc. Zmotion always puts quality at the first place, regards requirements as the first priority, takes "creating value" as the base, and considers "improving performance" as the pursuit. All the time, what we do is to supply smart manufacturing with more valuable motion control products, solutions, and services.

Corporate Culture

Mission

Let Chinese Motion Control Lead the World

Wish

Better Motion Control, Smarter Life

Zmotion^{*}

Business Philosophy

Strive

As a Struggler Keep Growing Focus on Target Adapt to Path Create Tools

Service

Take Service as Soul

Less Service: Easy to Use Better Service: Efficient Response Reliable Service: Good Performance

Study

Take Study as Routine Study in Needs Study in Competition Study in Cooperation

Help

Help You, Achieve Us

Take Help as Arm Help Colleagues Help Partners

03

Zmotion

Enterprise Qualification

Zmotion[®]

| Development | History

- Embedded Vision Motion Controller VPLC532E
- ► ZHD500X HMI
- ZMI0310 Expansion Module

2021

- Zmotion New Address
- Zmotion New Office in Xi'an
- Zmotion New Office in Dongguan
- Embedded Vision Motion Controller VPLC516E
- ► 12-Axis EtherCAT Vertical Bus Motion Controller XPLC312E
- ► 8-Axis EtherCAT Bus Network Motion Control Card ECI2828

New Product Series: VPLC Machine Vision Motion Controller

2020

- Windows Real-Time Motion Control Soft Kernel MotionRT7
- Open Laser Scan Motion Controller ZMC408SCAN
- Rapid-Automatic Production Line Configuration RTFuse
- PC-based Motion Control Card XPCI / XPCIE
- Vision Motion Controller

2022

- Zmotion New Office in Chengdu
- Zmotion New Office in Wuhan
- ► 60-Axis EtherCAT & RTEX Motion Controller ZMC460N
- ► 20-Axis EtherCAT & RTEX Scan Motion Controller ZMC420SCAN
- 4-Axis Network Motion Control Card ECI2418
- ZMI0300 Bus IO Expansion Module

2019

- "Zmotion" Brand Upgraded
- Zmotion Obtained "ISO" Certification
- Zmotion New Office in Xiamen
- Zmotion New Office in Qingdao

 2-6 Axis Pulse Motion Controller / Card ZMC0XX Controller ZMC1XX Controller
 ZCAN Bus Expansion Module
 ECI1000 Card

2013 > Zmotion Technology was Established 4-12 Axis Pulse Motion Controller ZMC2XX Controller ZHD300/ZHD300X Handheld HMI

Zmotion

MotionRT Development History

China's First R & D

Windows Motion Control Real-Time Soft Kernel

Cross-Platform

Motion Control Real-Time Soft Kernel

Zmotion[®]

Real-Time Linux (x86)

Rapid Local Port "LOCAL" Real-Time Linux (ARM) Machine Vision (RTVision) Real-Time Bus (EtherCAT/RTEX/XY2)

Real-Time HMI (RTHmi) Real-Time PLC (RTPlc) Real-Time BASIC (RTBasic) Real-Time Motion (RTMotion)

MotionRT5

Machine Vision (RTVision) Real-Time Bus (EtherCAT/RTEX/XY2 Real-Time HMI (RTHmi) Real-Time PLC (RTPlc) Real-Time BASIC (RTBasic)

Real-Time Windows (x86) Rapid Local Port "LOCAL"

80

Zmotion

MotionRT7

MotionRT7 is one cross-platform motion control real-time soft kernel, which is China's first self-D&D Windows motion control soft kernel.

Software Structure

Motion control program, vision algorithm and MotionRT7 motion control engine share memory and interact data at a high-speed, then the interaction efficiency of motion control and machine vision are promoted greatly.

User customize functions merge with Gmc, Gear/Cam, Frame, Robotics, CNC and other algorithms to create one specialized control system for users.

Motion Control Functions

Motion Axes: EtherCAT, up to 240 axes IOs: up to 4096 INs & 4096 OUTs by EtherCAT Analogs: up to 512 ADs & 512 DAs by EtherCAT

Functional Features:

- a. point-point, interpolation of linear, circular, helical, continuous processing.
- b. electronic cam/gear, synchronous follow, position latch, virtual-axis superposition.
- c. acceleration & deceleration of S curve, SS curve: softer trajectory motion.
- $d.\,1D/2D/3D\,high-speed\,PSO, vision\,fly-shooting, high-speed\,dispensing, laser.$
- e. users can customize motion control alorithm, robot algorithm, etc.

Machine Vision support the third party vision

How MotionRT710 Composes

- Green (no need to install): quick start
- Be with "Drive Operation Permission Authorization" (no authorization, also valid)

CNCxxx Function / CNCxxx Function

- Configure EtherCAT, functions, and parameters.
- Uniform & complete SDK library
- ON, Connect, Simulation, etc.

Software

AX	64 - MO8 -	HW - Z	ZV - R1	- NC		
	0	3	4 5	6		
0	64-Axis (6-128) 4	Machin	e Vision		
2	Motion Control	5	R1: nor R6: rob	mal robot otic arm o	ic arm f 6-joint / specia	al structure
3	PSO	6	NC Fun	ction / G C	ode	

Zmotion

System Diagram

Zmotion°

Applications & Solutions

▲ 3C Electronics

▲ Semi-Conductor

▲ Laser Processing Equipment

▲ Photovoltaic

▲ Lithium Battery

A Automotive Equipment Manufacturing

▲ Printing & Packaging

▲ Textile & Clothing Equipment

▲ CNC Processing

▲ Medical Equipment

▲ Industrial Robot

▲ Logistics

Zmotion

Contents

Product Property	 Functional Property 1 Functional Property 2 	Property 3Property 4Property 5	• Property 6 • Property 7
Software Introduction P23-30	 Software Introduction Programming Language Introduction 	Development Deb Motion Command	ugging & Diagnosis s Easy to Use
Motion Controller P31-50	Pulse Controller Structure Bus Controller Structure	• ZMC0XX • ZMC2XX • ZMC3XX	• ZMC4XX • ZMC4XX Laser Scan • XPLC Series • XPLC300
Vision Motion Controller P51-64	Vision Motion Controller System Structure	Vision Functions VPLC516E	• VPLC532E • VPLC7XX (x86) • VPLC504SCAN Scan
Network Motion Control Card P65-76	Pulse Card System Structure Bus Card System Structure	• ECI 10 Card • ECI1000 • ECI2000	• ECI3000 • ECI382X
PC-based Motion Control Card P77-88	PC-based Motion Control Card System Structure	PCIE Bus Motion (PCI Bus Motion (YPCI Bus Motion (XPCI Bus Motion (XPCIE Bus Motion	Control Card ontrol Card Control Card Control Card
IO Expansion Module P89-93	 EtherCAT Module Framework ZCAN Module Framework ZMI0310 Module Framework 	EtherCAT Expansio ZCAN Expansion N ZMI0310 Series Ex	on Module Aodule xpansion Module
HMI P94-97	• HMI		
Reference And Learning Materials P98-99	• Zdevelop User Manual • ZBasic Manual • ZHMI Manual • ZPLC Manual	 Zvision Manual PC Function Libration Zmotion Article Video 	ry Manual

Do Better Motion Control

Simulation and online debugging are convenient, like VC.

Online Control

Control by operation systems / terminal without operation system.

Synchronous Motion

Support synchronous motions (IO, PWM, DAC, system variables modification, etc.) -- easy & efficient

Adaptive Look-ahead

Look-ahead automatically & Force special point's speed flexibly. Support look-ahead on max 16-axis interpolation. It can specify the additional axis not to do speed look-ahead.

S / SS Curve Acceleration & Deceleration

Merge small segments to do acceleration and deceleration. S Curve: continuous acceleration motion. SS Curve: continuous jerk motion -- smoother motion & less shock

Speed Limit for Small Circle

Different arc radius, different speed limits. For small segments, it will automatically fit as the arc to do speed limit.

Robotic Arm Control

Support multiple kinds of robots, one controller can control several at the same time. Stepper motor can be used because there is specialized acceleration & deceleration control.

Interpolation / Continuous Interpolation

Support multiple kinds of interpolation, including hybrid continuous interpolation.

Motion Buffer

Multi-Machine Control

Each group's axes control one device independently.

Turntable Control

While the turntable is rotating, it can automatically do linear, circular interpolation at the same time.

Modify DPOS Dynamically

Safety

Electronic Cam

Support changeable continuous cam.

Power Failure Detection / Storage

Trigger power-off interrupt function in the instant of power-off.

Virtual Axis / Motion Superposition

It can be combined as all kinds of complex motions.

Three-Time Programming

RTBasic (ZBasic): second programming, also supports three-time program file, its behavior is defined by ZBasic program. ✓ oversize three-time file & ZBasic grammar & G Code grammar & 3 File can be imported from U disk

Custom Communication

MODBUS master and slave station are OK. It can communicate with all kinds of special devices by "custom protocol".

High-Speed Hardware Comparison Output

FPGA hardware comparator achieves hardware comparison output with unlimited capacity for camera high-speed photo (fly-shooting) and laser control.

Hardware PWM Output

FPGA hardware achieves high-precision PWM output for highspeed dispensing and laser control.

Teach Pendant

Program freely. Support the third party's touch screen for teaching.

ZHD500X

Backlash/Pitch Compensation

Compensation is achieved by simple parameters configuration.

Position Cycle Mode

Set axis coordinates in one certain range.

Pulse Closed Loop

Specialized pulse closed loop mode, pulse and encoder share one axis No., and support pitch compensation at the same time.

Encoder Hardware Latch

Record now encoder position instantly by specialized IN to achieve high-precision position latch.

Others

- ► Support IO expansion by EtherCAT & ZCAN
- Support EtherCAT
 Support RTEX

Robot Application on Axis 4 / Axis 5 RTCP

bape (0, 1, 2, 3) dpop=9, 0, 0, 0 auon=0, 0, 0, 0

table (110 (111)) table (120, 300, 0

TELOCKR

-

Table(100, 100, 50) Table(100, 100) 存居第二十四副点, 指片位置 -500 2 在城市三个边制办。他对在

hacs (0, 1) HOVESPLIMEARS (2, 0, 20, 0, 10) HOVESPLIMEARS (2, 0, 120, 100, 110)

MOVESPLINEABS

诸军国个控制员, 彻太位;

▲ Single-Turntable

▲ Dual-Turntable

Typical Applications: welding/dispensing/spraying/laser/woodworking, etc.

Position Synchronous Output (PSO) Application

▲ HW_PSWITCH Application

Any Initial Position: take real feedback of servo / grating as standard base. Any Synchronous Width: minimal of one pulse width

Any synchronous Volume: write & clear synchronous output's buffer at any time.

A PSO Laser Output & Motion Control

Typical Applications:

high-precision dispensing/laser/shooting(take photo by industrial camera), etc.

41

Spline Curve Interpolation

ase(0,1,2,3)	#28	
pos=0.0.0.0 pos=0.0.0.0	an at at	MISTERN ASSAULT
able(0, 100, 100) able(0)(1)存储第二个控制点, 相计起点距离 able(10, 200, 100)	NEW (1930) P 118.7 III MULTING(P) FUNCE FX FX <td< th=""><th>Milec 20100 Milec 21000 Milec 8.00 Milec 500.00 Milec 100.00 Milec 100.00</th></td<>	Milec 20100 Milec 21000 Milec 8.00 Milec 500.00 Milec 100.00 Milec 100.00
sbie(10)(11)存储第三个控制点,相对抗击声至 bbe(20, 300, 0)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
Mo(20)(21)存储累加宁拉树市,然而距离		
Se(100, 100, 50)	17(100)(-200(10)	
sec. (A.1) (17 200, -10) (25 800, -70) (20 200, -50)	1 - 1000 - 100	
86(10)(11)存储第三个控制系,用对抗杀购率。 Ae(120,300,8)	1 _1(mm _1)(m pn	
se(20)(21)符储第四个控制点,后点距离	p gara gar	
相对和声描升	In allement all toos	
VESPLINE 2, 0, 20, 0, 10 VESPLINE 2, 0, 120, 100, 110)		
se(2.3) veabs(table(0),table(1))," veabs(table(10),table(11)) *		
veabs(table(20)_table(25) veabs(table(20)_table(160),table(21)+t veabs(table(20)_table(110),table(21)+t	(ble; 101)) (ble; 111))	

▲ MOVESPLINE

Spline Interpolation High-Precision High-Efficiency More Convenient

Typical Applications: High-Speed & High-Precision - metal process/wood process/high precision dispensing/laser

Hybrid Interpolation (Pulse, EtherCAT, RTEX)

High-Performance EtherCAT/RTEX

le(21) -table (101) le(21) -table (111) le(21) -table (111)

ZMC464 16-Axis (max 100µs) 64-Axis (max 500µs) PCI464 16-Axis (max 100µs) 64-Axis (max 500µs)

Support All Kinds of Operation Systems & Programming Languages

Support C Language Compiling & Real-Time Executing

Some controllers can use inner C language to compile and run the program in RTSys IDE development environment.

(1) promote program operation and calculation execution efficiency -- for high-speed applications

(2) user can use own robotic arm algorithm model -- user system becomes more flexible and easier

No need to compile the code by external software: promote engineers' development efficiency & simplify project creating process and configuration process & enhance intelligent manufacturing

文件视图	- n x	🖻 userc.c 🗵 🗈 Baisc.bas 🖻 Hmi.hmi 🖻 Plc.plc
文件名	自动运行	1 #include "userc.h"
Baisc.bas		
Plc.plc		4 typedef double type_Table; //别名定义
Hmi,hmi		6 type_Table* tmp_VectorA; //向量A指针
userc.c		7 type_Table★ tmp_VectorB, //向量印指针
		<pre>9 int g_PointCnt; //与个物 10 int g_AxisCnt; //指个物 11 int g_PosDateLen; //数据长度 12 int g_PosDateLen; //数据长度 13 /#************************************</pre>
		<pre>35 36 37 37 37 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39</pre>
文件视图 标签视	图组态视图	4
命令与输出	al an	

Laser Scan in Large Format

Advantages

- one controller integrates with laser control + scan control + axis control -- save hardware cost.
- use XY2-100 scan protocol, 2D / 3D laser scan are OK, and support axis control and scan linkage interpolation.
- open development ways (C# / C++ / Labview.....), industry software can be created rapidly.
- support "open laser correction" -- higher laser precision
- control axis, scan, laser power synchronously -- higher efficiency
- axis and laser scan do synchronous motion -- solve the problem "splicing error in traditional large format"

Open PSO Application in Laser Processing / Vision Fly-Shooting / Precision Dispensing

PSO: Position Synchronized Output. Laser is controlled precisely by triggering laser pulse at precise position to switch with fixed gap.

Real-time capture encoder feedback (/ pulse) to do position comparison, and do phase synchronization with laser output signal. While moving, trigger laser output to ON & OFF at constant distance or custom distance, then make pulses be average in processed object, including acceleration, deceleration, and constant speed.

PSO Laser Output & Motion Control

1. Custom Position Output

Invert electric level according to set position.

3. XYZ 3D Position Comparison Output Support custom XY, and XYZ 3D position comparison output.

PSO Laser Output Simulation – Oscilloscope

2. Period Output Mode with Fixed Distance

Set fixed distance, invert (once / N times) in each comparison position in cycle.

4. PWM, Analog, Speed Output Synchronously

PWM duty cycle, analog output, and speed of laser beam path change proportionally.

Applications:

Laser Scan Marking, large-Format Splicing Marking, Fly Marking, Large-Format Laser Cutting, Laser Fly Cutting, Laser Welding, Laser Drilling & Molding, Scan + Motion Axis Linkage Marking, Laser Cleaning, Laser Polishing, Laser Cladding, Laser Additive Manufacturing, Wafer Scribing & Marking, PCB & FPCB Drilling, 3D Processing, etc.

Zmotion®

Software IDE Introduction (ZDevelop / RTSys)

Zdevelop (RTSys) is one PC side software that is mainly for Zmotion motion controllers' program development, debugging, and diagnosis (RTSys is upgraded one). Through this, easy to edit and configure controller, quick to develop application program, and running program can be debugged in real-time. In addition, it supports Chinese and English.

"All In One" ZDevelop / RTSys IDE Development Environment

▲ Integrate with Basic, PLC, HMI, Vision

Support PC Simulation Operation

k Simulator									X							
- 输入仿真											140	-			王国改善考	机器机式制量系统
0 1	2	П 3	4	5	6	7	Power	Led1	Led2		•				1015 X 95, 66[01, 66	N/2年 Y 和武 : 07.0(-13.01)
8 9	10	11	12	13	14	15		•					-	>	4836 4837 303. 481.57. 32	101.20442.36 B
16 🗌 17	18	19	20	21	22	23	设置	5	显示		-				#1 T1 \$31,15 196,	1000.4 10 10 10 101.14 100
									T T	146	(1000)	aux gar	10114	10100	HARD AND AND	
-编码器仿真—										 	EI I	1912 1	HIFE	SHEEK.	HALLER	7¥]. 400. X
-编码器仿真 ENCODERO	0			ENCOI	DER3	0				 1.00	er 1	19 <u>12</u> 1	KIN2	ERRE	NUCCI NIC	(74). 400. A
-编码器仿真— ENCODERO ENCODER1	0			ENCOI ENCOI	DER3 DER4	0			÷	 a Refer	KINDI		5/24	9-10-22 P I		(\$¥]. 400.3
-编码器仿真— ENCODERO ENCODER1 ENCODER2	0			ENCOI ENCOI ENCOI	DER3 DER4 DER5	0 0			t	 1	жирі Шраніт.	18 <u>12</u> (1	KAN RTRK	anter a transformation of the second se		940. 400. A
- 编码器仿真 — ENCODER0 ENCODER1 ENCODER2	0 0 0			ENCOI ENCOI ENCOI	DER3 DER4 DER5	0 0 0			- <u>t</u>			812 8 	Kite Books: Books: Books:	5 12 2 2 7 4 26 12 2 7 4 26 12 2 14 0		90. (46. i
- 编码器仿真 ENCODER0 ENCODER1 ENCODER2 - 输出监控	0 0 0			ENCOI ENCOI ENCOI	DER3 DER4 DER5	0						25 1.3 100.1	5/64 2784 2784 2792 201 201 201 201 201 201 201 201 201 20	2011 2012 10 10 10	ST N	20. (40.)
-编码器仿真- ENCODER0 ENCODER1 ENCODER2 -输出监控				ENCOI ENCOI ENCOI	DER3 DER4 DER5	0				**		23 1.3 1.00.5 100.5 100.5	б/да ВФ-62 ВФ-22 В-1-22 В-4 В-4 В-4 В-4 В-4 В-4 В-4 В-4 В-4 В-4	(日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本)		941. (465. A
- 编码器仿真 ENCODER0 ENCODER1 ENCODER2 输出监控		3 🖸 4		ENCOI ENCOI ENCOI	DER3 DER4 DER5	0 0 0	9 10				-MILAN MR 2028 10428 14428 14428	23 () 100.1 2000.1 8.4 8.3	ліст парат. парат. парат. парата. Европа. Европа.	2011 2011 2011 2011 2011 2011 2011 2011		94. (es. 1
- 编码器仿真 - ENCODER0 ENCODER1 ENCODER2 - 输出监控 口 0 口 1 [3 🔲 4	5	ENCOI ENCOI ENCOI	DER3 DER4 DER5	0 0 0	9 0 10	11		100 100	-100-01 #72, 2028: 1029: 1000: 1000: 1000: 1000: 1000:	23 1.3 100.1 2000.1 3.0 8.3 3.3	КҚШ ВӘҚС ВӘҚ ВІТДІ ВІТДІ БІПСІІ ПІПСІІ ПІПСІІ ПІПСІІ ПІПСІІ ПІПСІІ ПІПСІІ ПІПСІІ ПІПСІІ ПІПСІІ	5 11/2 17 70 7 10 10 1 1 1 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1		74 65.11

🛦 Simulator IP: 127.0.0.1, no controller, it also can debug & diagnose program, including machine vision local image simulation & debugging.

Programming Languages

A ZBasic (RTBasic)

A ZPLC (RTPlc)

🛦 ZHMI (RTHmi)

spk screen							_	
设备状态	自动运行		正記	=hc/+z	コ.二/版		时间	13:35:01
登录状态	Lev1.0		24	24/101/44	-241 - 2421		日期	15:10:2021
文件来源	控制器	-	CO0 X10.0000	71.0.0000	210,0000	A10,0000	C10.0	100
文件	名称	7	G00 X10.0000	¥20.0000	210,0000	A10.0000	C10, 00	000
GCode	002. z3p	8	G00 X-10.0000	¥-20,0000	2-10.0000	A10.0000	C-10.0	000
X:	6.316	9	GOO XO. 0000	70.0000	Z0.0000	A0. 0000	C0.00	0
	2000.000	10	G00 X10.0000	¥10.0000	Z10.0000	A10.0000	C10, 0	000
Υ:	6.316	11	GOO X10,0000	720,0000	Z10, 0000	A10.0000	C10, 0	100
2.	6 916	12	G00 X-10,0000	¥-20,0000	Z-10,0000	A10.0000	C-10.	000
40.4	~	13	GOO X0.0000	¥0.0000	20,0000	A0, 0000	C0.00	10
A:	6. S16	14	G00 X10.0000	Y10.0000	Z10, 0000	A10.0000	C10.00	100
		15	G00 X10.0000	¥20,0000	Z10.0000	A10.0000	C10, 00	100
6:	0,000	0			_	1.00		
φ:	6.316	(\mathbf{n})			STOP	.0	1	文件管理

▲ XPLC CNC Standard System

Zbasic (RTBasic)

ZBasic provides all standard program grammars: variable, array, condition judgement, loop, math algorithm. In addition, powerful motion control functions provided by extended ZBasic commands and functions, single-axis, multi-axis interpolation, synchronous / asynchronous motions, IO & AIO control, etc. For "self-defined SUB", edit some general functions as custom SUB, then easy to program and modify, at the same time, it supports G code form SUB. What's more, it supports global variable, array, SUB / file module variable, array, SUB / local variable (LOCAL).

Zbasic supports real-time multi-task, that is, several ZBasic programs can be built and run at the same time, then complex applications become easier. ZBasic supports interrupt function, for example, power failure interrupt, which can record the state when power off, namely, convenient to restore after powered on.

ZPLC (RTPlc) Ladder Diagram

ZPLC is the PLC language for Zmotion motion controller, LAD or instruction list can be used, and the usage is same as market common PLC commands. Therefore, it is easy to program for users who are familiar with PLC.

Support linkage programming between ZPLC and ZBasic .

ZHMI (RTHmi) Configuration

ZHMI is the configuration environment for Zmotion motion controller. It can use together with ZBasic and ZPLC. And one time upgrade, configuration interface and controller program can be updated synchronously.

Custom G Code CNC Standard System

It is one open CNC standard system running on ZHMI, specifically, edit program directly by G code system. Users also can add and specify functions.

Development Debug & Diagnosis

- ► watch controller running state
- ► support ZBasic, ZPLC and ZHMI
- support manual operation

Quick & Easy Debugging

- support online debug
- ► support simulation (controller & HMI) ► support IN & OP
- support multi-task running
- support oscilloscope
- support checking registers' data
- encrypt program, lock controller -- protect user's intellectual property

×

▲ Manual | quick to debug axis

iger (PLC)or	504				Acres
Daniel pater	5.c .	Stale rulus	T or all value	Paies ode	7 × at large
N:					
Chisso) souther	5.44	Segle value	Y or ad value.	Railers tests	f is at heige
Curran anator	15.14 0.0%	State value B	7 or ad value. 0.000	Raten teda	F or all longs.
n Dassal souter B J	0.0% 0.0%	iingia raisa B B	7 or ad value 0.000 0.000	Ration tests 495 495	7 or 84 Europe 4=529 4=529

AD/DA | capture & control analog

High-efficiency & Quick Diagnosis

5 BR	alle: Satism	-	00 . angai si kina	Te Te	ez vit	Eres - K	2 BEOGIN		Mar 708.08	Mectallini Mectallini
7	linw Yesher				Separat Sefere	Espert Code	Scope Corfu			
2			(Decis		0.038	1000.000	Band he .	1000	fismi t:	
2			EP125		100	Lengtone	Depth -	10000	Honoral (0)	
	1.1		0900		9.000	1000-000	See.		Gereal #	
							2 are the set	of Tells	Recal di	
							3465-346	200000	threal #	
							Ballin:	1	flanel #	
							(holias)	010 - 12 I	Gasel 7:	
								188 .	thursd 0.	-
							() hepset paras	o barre :		1

A Scope | real-time show 8 data & trajectory

Task		▼ ₽ ×
Task	State	File Line
0	Stopped	TEST 1.BAS,line:11
1	Running	TEST 2.PLC,line:1
2	Running	TEST 3.HMI,line:1
4		•
Stack	Sub	File Line

A IN | real-time watch IN, custom IO state

Residence	Value		Terrorit	(Barrent)	
pallyradar .	1 94,04		Tubes c	THE DOLL	
DT(0)	0.000	3	ag Type:		
DT(1)	0.000		DT(TABLE)		
DT(2)	0.000	5	tart Nun:		
DT(3)	0.000		1.0		
DT(4)	0.000		9		
DT(S)	0.000	3	lan es :		
DT(6)	0.000		E00		
DT(7)	0.000		manati matata		
DT(8)	0.000				
DT(9)	0.000		1000		
DITCIO	0.000		Leo	a	

▲ Scope | real-time show 8 data & trajectory

File(F)	Home(O)	Controller(C)	Edit(E)	View(V)	Tool(T)	Debug(D)
Start/Sto Debug	P Go P Pause P Run to C	La Step Int Ca Step Ov ursor La Step Ov Debug	er Breakp	soint		
Cantrol Cherry	NUEVS TEEL E tert 1. bas P test 2. plo test 3. bai Config files	• • • × :[0] :[1] [2]	1234507890	Insert/Rem DASE(U) ATYPE= UNITS= SPEED= ACCEL= DPOS = Trigge HOVE (5) VAIT II PRINT	ove breakp 1, 1, 1 'se 100, 100, 1 100, 10, 10 1000, 1000 1000, 1000 0, 0, 0 r 'trigg 0, 1000, 1 DLE 'vait DPOS 'pr	oint (FP) t t as pulse 00 'pulse t 00 'pulse 00 'only s ,1000 int he osc 500) 'axis : until the rinted resu

▲ OP | real-time watch OUT & output

Watch		▼ ₽ ×
Watch Name	Value	
SPEED(0)	100	
DPOS (0)	500	
DPOS (1)	1000	

▲ Variable | real-time watch variable & custom variable

Axis select	Paramet	er select		
	Axis0	Axis1	Axis2	1
COMMENT				
ATYPE	0	0	0	
ATYPE Info	Virtual-Axis	Virtual-Axis	Virtual-Axis	
UNITS	1	1	1	
ACCEL	10000	10000	10000	
DECEL	0	0	0	
SPEED	1000	1000 1000		1
CREEP	100	100	100	
LSPEED	0	0	0	
MERGE	0	0	0	
SRAMP	0	0	0	
DPOS	0	0	0	

▲ Task | real-time watch tasks

Axis Parameters | real-time see axis parameters & states

Development Debug & Diagnosis

- watch controller running state
- support ZBasic, ZPLC and ZHMI
- support manual operation
- support online debug
- ► support simulation (controller & HMI) ► support IN & OP
- support multi-task running
- support oscilloscope
- - support checking registers' data
 - encrypt program, lock controller -- protect user's intellectual property

High-efficiency & Quick Diagnosis

VirtualAxises:	64	
RealAxises:	64	
Taskes:	22	
Files/3Files:	111/8	
Modbus0x Bits:	8000	
Modbus4x Regs:	60000	
VR Regs:	8000	
TABLE Regs:	320000	
RomSize:	125000KB	
FlashSize:	262144KB	
SoftType:	VPLC5xx-Simu	
RTVersion:	5.200-20190611	
Build Date:	20240426	
IpAddress:	127.0.0.1	
HardVersion:	464-0	
ControllerID:	1234	
ZvlibVersion:	1.5.1-Beta Build(20231228))

Curtrale	- State					
Curiti	For (UI)	Antes	Sec.30	Suchat	Hartin	Rectored
1004	840 (DE364)	**	23 (D-28)	13 (0-14)	8	3 (6-1)
Recipiente	JCarflodet Wa	titiodes Co	minunication	infa		

- ▲ BasicInfo: controller basic information
- A ZCanNodes | node configuration of local controller, IO & AIO by CAN expansion module

						12172310	120105	
844438	(vandorsa)	(14411410	NILES	actives	2011	Ratter	Servin .	change

▲ Slot0Nodes | node configuration of local controller, IO & AIO of EtherCAT/RTEX drive expansion module

Quick to Upgrade Firmware & User Program

Update Firmware			×
TypeString:	VPLC5xx-Simu	Hard Version:	464-0
SERIAL_NUMBER:	1234	Soft Version:	5.200-20240426
Zfm File:			Browse
Cancel			Update

t 💽 38400 💌 No Par	紛攘	自动链接			
192.168.0.11	销换	关闭链接			
₩/2012013182: 类型 2012432 硬件版本 432-0	_	固件新本 4.60-3	0170522	编号 1709007	48
ile 文件 [C:\Users\motion\Deskt	op\123. z	er rDown	×	Br	orse 选择
ile文件 [C:Wsers\motionUeskt	op\123.r. Zai	nr rDown update success.升级t	×	Br Up	owse 选择 date 升级

🛦 Update User Program | ZDevelop generates compiled ZAR file, then users can remote update, also can protect source codes.

🛦 Update Firmware | easy to update firmware for new functions

Multiple Encryption -- Protect Your Intellectual Property

01. program only can be downloaded (can't upload)

02. password: oversize character & store by irreversible algorithm

MakeZar		×
□ BindAppPassword		✓ ***
🗌 BindControllerID	0	
Zar File		Browse
	ОК	Cancel

03. controller is with unique No.: it can lock user program, one single controller or several by APP_PASS.

Lock		×
Warning: The	e password must be remembered.	
Password:	******	*
Confirm:	******	
Lock	Cancel	

Motion Commands Easy to Use

All Kinds of CAM

cam, cambox movelink, moveslink flexlink, movelink_modify

Software & Hardware Synchronized

▲ software output synchronously

Software Synchronized Output

move_op move_op2 move_table move_delay move_synmove move_aout move_asynmove, move_task moveop_delay, move_pwm

Hardware Latch Synchronously "regist" Hardware Output Synchronously "hw_pswitch" Hardware Timer "hw_timer" Precision Position Output "move_op"

Look-Ahead Modes of Continuous Interpolation

merge corner_mode decel_angle stop_angle force_speed zsmooth full_sp_radius

Robot Kinematics Algorithms

▲ 30+ robotic forward & inverse kinematics algorithms

30+ robotic formward & inverse kinematics algorithms connframe/connreframe

delta2, delta3, scara, 6-joint robotic arm, etc.

Delta Robotic Arm

ZRobotView Delta Robotic Arm Simulation | standard 4-axis Delta, 2-axis Delta, 3-axis Delta

SCARA Robotic Arm

ZRobotView SCARA Robotic Arm Simulation | standard 4-axis SCARA, lifting SCARA, special SCARA, 6 degrees of freedom/palletizing/collaborative/spraying robot, etc.

Zmotion[®]

Open G Code ZMotion NC Platform

Zmotion NC is one optional function for ZMC4XX and above controllers. It provides ISO standard G code commands and rich functions, like, multi-channel, cutter compensation, macro process, 3D simulation, preview, etc. And NC processing codes made by different CAD/CAM software are valid, UG. MasterCam, ArtCAM, etc. For G code files, it supports files with suffix ".cnc/.nc". Applications: engraving & milling machine, carving machine, drilling center, etc.

other file formats can be expanded through "ZG_EXFILE" command.

CNC Parser: ISO Standard G Code Instruction Set

G00 X4. 296 Y-7. 427 Z3. 23	:一般格式,关键字之间以空格区分,"-"代表参数为负	Motion Related: G0, G1, G2, G3
	:"+"代表参数为正数,默认省略	Distance Mode: G90, G91
G00X4.296Y-7.427Z3.23	;无空格区分也可支持,可观性差些	Tool Tip Radius Compensation: G40,
G00X4. 296Y- 7.427Z3.23	;空格出现位置不影响最终识别的代码,效果同上	G41, G42
GO X4 Y5 Z3	;可省略关键字参数的前导 0,参数为整数时可不带小数	Tool Length Compensation: G43,
GO X. 4 Y 5 Z3.	;可省略小数点前的0,和小数点后的0	644, 649
	:等同于 GOO X0, 400 Y-0, 500 Z3, 000	Feed Mode: G94, G95
g0 y4 z3 x5	;关键字不区分大小写,同行关键字的顺序无意义	Main-Axis Speed Mode: G96, G97
y4 z3 x5 g0	;但同行代码不能同时出现同组关键字,如 60、61、62	M Related Functions: M0, M1, M2,
N160 G1 Z. 444 F200.	;F200. 等同 F200. 00,表示 XYZ 轴进给速度	- M30

CNC Parser: Macro-Program

Support type B macro program, including macro variable, macro-operation instruction, macro-control commands.

A processing code and processing picture of semi-ellipsoid sphere programmed by macro program.

Zmotion

ZMotion CAD V2.0 Software Platform

Zmotion CAD V2.0 is a tool software related to RTSys (ZDevelop) software, which can import graphic files (DXF, PLT, AI) to transfer them into Basic codes / G codes for controller, then download codes into controller or import 3 file into controller by reading.

Optimize Graphic Automatically / Manually: Smooth Curve, Remove Small One, Remove Duplicate Lines, Merge Connected Lines, Sort, Optimize Empty Motion.

曲线平量 12 自动曲线平量 由线27指的构体。	[9.65
4860-1838 P 自動性的法1838 優大尺寸:	pas
おお成長は 17 白花水は重賞社	
874624 P 82624824 \$7.53	[#3
8月 戸 10月155 月5553: 戸 光祥石町	(Bad-2048 -
化化空间 12 白明化化空料	

Automatic Optimization

A Manual Optimization

丁艺会教

Technology Parameters

RORE: 1	上抬东京: 10	□ mI+871
至19- 重度, 500	加速度: 1000	減速度: 3000
311 3012; [200	加速度: 500	ALE R: 500
《 總計論行	C HERISAN	₽ 器机变为小线段
M07 开保护气 M04 徽代		
MAT 开始护气 MC4 蒙代		
967 开资护气 969 蒙代 加工之后添加数数:		
1477 元保和气 1409 家代 1911之后李加郡朝: 1407 天徳利 1409 天徳利		
HAT 开発的で HAT 法保护で MII之后生的認知: HAT 光保护で HAT 光信力		

- ▶ it can set processing path's origin. ▶ support simulation and information showing.
 - before/after processing.
- heights of axis Z processing and empty motion can be set freely.
- ▶ absolute / relative control modes. ▶ it can add/delete action parameters (self-define) ▶ custom graph length precision unit, (reference 0.01-0.5)
 - support look-ahead function, automatic apart arc as segments, corner deceleration, chamfering,

Zmotion

Pulse Controller System Structure

Bus Controller System Structure

ZMC0XX Controller

ZMC0XX economical multi-axis motion controller is a kind of pulse standalone motion controller. Support up to 6 axes for some simple trajectory control, such as, linear interpolation, circular interpolation, helical interpolation, etc.

Applications: pulse within 6-axis -- electronic semiconductor equipment (detection equipment, assembly equipment, locking equipment, soldering machine), dispensing equipment, assembly line, etc.

Functional Features

- Axis: up to 6-axis (include virtual-axis)
- ► IO: up to 30 INs & 14 OUTs
- Communication: 2 RS232/RS485 (standard)
- Analog: 2 DAs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse/double pulse
- Functions:
 - 01. support encoder input, which can be configured as handwheel mode.
 - 02. support IO expansion by ZCAN, max 256 INs & 256 OUTs synchronously.

- 03. axis position limit, origin signal can be configured as any IN.
- 04. max output current is 300mA, which can directly drive some solenoid valve.
- 05. electronic cam & gear, position latch, synchronous follow, virtual axis, etc.
- 06. a variety of encryption methods to protect user's program.
- Performance:
 - 01. max output frequency can reach 5MHz.
 - 02. support up to 6 axes for linear / any circular / helical interpolation.

Models

Models	Image	Axis	En- coder	Total Axes	Pulse Fre- quency	Inner IN & OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	Power Down Store	232	485	ECAT	USB	Size (mm)	Functional Description
ZMC004BEA-V2		4	2	6	500k (single -ended)	16/16	2	2	32	380k	3	32	2	1	1	-	177*122	point, line, arc, cam, continuous interpolation
ZMC004WEA-V2		4	2	6	500k (single -ended)	16/16	2	2	32	380k	6	1024	2	1	1	-	177*122	point, line, arc, cam, continuous interpolation
ZMC004CE-V2	0.00 01.00000 01.0000	4	1	12	5M	30/14	-	2	128	300K	8	1024	2	1	1	1	226*127	point, line, arc, cam, continuous interpolation
ZMC006CE-V2	0-0-0 0-1	6	1	12	5M	30/14	-	2	128	300k	8	1024	2	1	1	1	226*127	point, line, arc, cam, continuous interpolation

Interfaces

ZMC004WEA-V2

PIN No.	Encoder Method	Description
1	EA+	Encoder Phase A +
2	EA-	Encoder Phase A -
3	EB+	Encoder Phase B +
4	EB-	Encoder Phase B -
5	GND	Internal 0V
6	EZ+	Encoder Phase Z +
7	EZ-	Encoder Phase Z -
8	Internal +5V Power Supply	Internal +5V Power
9	-	-

PIN No.	Name	Description
1	PUL+	Pulse Differential +
2	PUL-	Pulse Differential -
3	DIR+	Directional Differential +
4	DIR-	Directional Differential -
5	GND	Inner 0V
6	ALM(IN24-29)	Alarm IN (be set, can be as general IN)
7	SERVON(OUT8-13)	Axis Enable (can be general OUT, no current amplification)
8	Internal +5V Power	Internal +5V Power
9	EGND	External Ground

▲ Encoder Interface (DB9 Male Head) ZMC006CE-V2

A Pulse-Axis (DB9 Female Head) ZMC006CE-V2

Note: refer to "User Manual" for more models and details.

ZMC2XX Controller

ZMC2XX economical multi-axis motion controller is a kind of standalone motion controller, there are pulse and bus types. Support up to 12 axes, 16 axes can be extended for complex trajectory control, such as, linear interpolation, any circular / space arc interpolation, helical interpolation, ellipse interpolation, etc.

Applications: electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing, non-standard, printing & packaging, textile & garment, medical equipment, assembly line, etc.

Functional Features

- Axis: up to 16-axis (include virtual-axis)
- ► IO: 24 INs & 8 OUTs
- ► Communication: RS232, RS485, USB, EtherNET
- > Analog: 2 DAs & 2 DAs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse/double pulse
- ► Functions:
 - 01. support encoder input, which can be configured as handwheel mode.
 - 02. support IO expansion by ZCAN, max 512 INs & 512 OUTs synchronously.
 - 03. axis position limit, origin signal can be configured as any IN.
 - 04. electronic cam & gear, position latch, synchronous follow, virtual axis, comparison output, etc.
 - 05. max output current is 300mA, which can directly drive some solenoid valve.

- 05. max output current is 300mA, it can directly drive some solenoid valve.
- 06. support multi-file & multi-task, and PC programs & controller internal programs can work synchronously.
- 07. a variety of encryption methods to protect user's program.
- 08. support power failure detection & power failure storage.
- ► Performance:
- 01. max output frequency can reach 5MHz.
- 02. max 16 axes for linear/any circular/arc/helical/elliptic interpolation.
- 03. support multi-machine independent continuous interpolation.
| Model | lmage | Axis | En-
coder | Total
Axes | Pulse
Fre-
quency | Inner
IN & OUT | Inner
AD | Inner
DA | Axis
Motion
Buffer | Space | Task | Power
Down
Store | 232 | 485 | Net | ECAT | USB | Size
(mm) | Functional
Description |
|----------|-------|------|--------------|---------------|-------------------------|-------------------|-------------|-------------|--------------------------|-------|------|------------------------|-----|-----|-----|------|-----|--------------|---|
| ZMC212B | | 12 | 2 | 16 | 10M | 24/8 | 2 | 2 | 512 | 460k | 13 | 1024 | 1 | 1 | 1 | - | 1 | 280*127 | point, line, arc, cam,
continuous interpolation,
robotic arm commands |
| ZMC212BE | | 12 | 2 | 16 | 10M | 24/8 | 2 | 2 | 512 | 460k | 13 | 1024 | 1 | 1 | 1 | 1 | 1 | 280*127 | point, line, arc, cam,
continuous interpolation,
robotic arm commands |

Interfaces

PIN NO.	Pulse Output Method Name	Encoder Method Name
1	PUL1 + (Pulse Differential+)	Ea1 + (Encoder Differential+)
2	PUL1 - (Pulse Differential-)	EA1 - (Encoder Differential-)
3	DIR1 + (Directional Differential+)	EB1 + (Encoder Differential+)
4	DIR1 - (Direction Differential-)	EB1 - (Encoder Differential-)
5	Inner 0V	Inner 0 V
6	-	EZ1 + (Encoder Differential+)
7	-	EZ1 - (Encoder Differential-)
8	Internal +5V Power	Internal +5V Power
9	PUL0 + (Pulse Differential+)	EA0 + (Encoder Differential+)
10	PULO - (Pulse Differential-)	EA0 - (Encoder Differential-)
11	DIR0 + (Direction Differential+)	EB0 + (Encoder Differential+)
12	DIR0 - (Direction Differential-)	EB0 - (Encoder Differential-)
13	Inner 0V	Inner 0V
14	-	EZO + (Encoder Differential+)
15	-	EZO - (Encoder Differential-)
16	Internal +5V Power	Internal +5V Power

A Pulse-Axis (16 PIN Horn) ZMC212B

Note: refer to "User Manual" for more models and details.

ZMC3XX -- Pulse

ZMC3XX high-performance multi-axis motion controller is a kind of pulse standalone motion controller. Itself supports max 16 axes, but 24 axes can be expanded to realize complex continuous trajectory control.

ZMC3E/N high-performance multi-axis motion controller

supports EtherCAT bus (N: dual-bus of EtherCAT & RTEX) and pulse. Itself supports max 16 axes (EtherCAT / RTEX + pulse), but 24 axes can be expanded to realize complex continuous trajectory control.

Applications: robot (SCARA, Delta, 6-joint), electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing, non-standard, printing & packaging, textile & garment, stage entertainment equipment, medical equipment, assembly line, etc.

Functional Features:

- Axis: up to 24-axis (include virtual-axis)
- IO: up to 48 INs & 32 OUTs
- Communication: RS232, RS485, RS422, USB, EtherNET.
- Analog: 4 DAs & 4 ADs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse / double pulse
- Functions:
 - 01. support encoder input, which can be configured as handwheel mode.
 - 02. support IO expansion by ZCAN, max 512 INs & 512 OUTs synchronously.
 - 03. axis position limit, origin signal can be configured as any IN.
 - 04. max output current is 300mA, which can directly drive some solenoid valve.
 - 05. electronic cam & gear, position latch, synchronization, virtual axis, comparison output
 - 06. support multi-file & multi-task, programs of PC, controller can work synchronously.
 - 07. a variety of encryption methods to protect user's program.
 - 08. support power failure detection & power failure storage.
 - 09. support several robotic arm algorithms (SCARA, Delta).
 - 10. support pulse closed-loop, pitch compensation, etc.
- Performance:
- 01. max output frequency can reach 10MHz.
- 02. support up to 16 axes for linear/any circular/space arc/helical/elliptic interpolation.
- 03. support multi-machine independent continuous interpolation.

- Axis: up to 16-axis (include virtual-axis)
- IO: up to 52 INs & 28 OUTs
- Communication: RS232, RS485, RS422, USB, EtherNET, EtherCAT / EtherCAT & RTEX
- Analog: 2 DAs & 2 ADs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse / double pulse
- Functions:
- 01. support encoder input, which can be configured as handwheel mode.
- 02. support IO expansion by ZCAN, max 512 INs & 512 OUTs synchronously.
- 03. axis position limit, origin signal can be configured as any IN.
- 04. max output current is 300mA, which can directly drive some solenoid valve.
- 05. electronic cam & gear, position latch, synchronous follow, virtual axis, etc.
- 06. hardware comparison output, hardware timer, precision output in motion.
- 07. support multi-file & multi-task, PC & controller's programs work synchronously.
- 08. a variety of encryption methods to protect user's program.
- 09. support power failure detection & power failure storage.
- 10. support several robotic arm algorithms (SCARA, Delta).
- 11. support pulse closed-loop, pitch compensation, etc.
- Performance:
 - 01. EtherCAT fastest refresh cycle is 500µs.
 - 02. max output frequency can reach 10MHz.
 - 03. support max 12 axes for linear/any circular/arc/helical/spline interpolation.
 - 04. support multi-machine independent continuous interpolation.

Model	Image	Axis	En- coder	Total Axes	Pulse Fre- quency	Inner IN & OUT	Inner AD	inner DA	Axis Motion Buffer	Space	Task	Power Down Store	232	422	485	Net	ECAT	RTEX	USB	Size (mm)	Functional Description
ZMC303	(1) S	3	3+1	10	10M	24+3/8+3	2	2	64	300k	6	1024	1	1	1	1	-	-	1	205*134	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC304	0-0-0-0 	4	4+1	10	10M	24+4/8+4	2	2	128	300k	6	1024	1	1	1	1	-	-	1	205*134	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC304X	44	4	4	12	10M	24+4/12+4	2	2	128	2000k	12	1024	1	1	1	1	-	-	1	205*134	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC306X		6	6	12	10M	24+6/12+6	2	2	128	2000k	12	1024	1	1	1	1	-	-	1	205*134	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC306E		6	2	12	10M	24+2/16+2	2	2	512	6144k	10	1024	1	-	1	1	1	-	1	205*135	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC306N	(* ******) 6- *** ******	6	2	12	10M	24+2/16+2	2	2	512	6144k	10	1024	1	-	1	1	1	1	1	205*135	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC306BE	(100))]]。 [100]]]]。	6	6	16	10M	40+12/16+12	4	2	128	2000k	13	1024	1	1	1	1	1	-	1	292*188	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC308BE	(100))))。 [100]]]	8	8	16	10M	40+16/16+16	4	2	128	2000k	13	1024	1	1	1	1	1	-	1	292*188	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC316BE		15+1	3	24	10M	24+15/8+15	2	2	512	16M	16	1024	1	1	1	1	1	-	1	241*149	point, line, arc, cam, continuous interpolation, robotic arm commands

Interfaces

PIN No	Name	Description
1	PUL+	Pulse Differential+
2	PUL-	Pulse Differential-
3	DIR+	Directional Differential+
4	DIR-	Directional Differential-
5	GND	Inner 0V
6	ALM(IN24-)	Alarm IN (be set, can be as general input)
7	SERVON(OUT8-)	Axis Enable (can be as general output, no current amplification)
8	5V	Internal 5V
9	EGND	External Ground
4		N

PIN No.	Pulse Out Method	Description								
1	PUL+	Pulse Differential +								
2	DIR+	Directional Differential +								
3	GND	Inner 0V								
4	EA+	Encoder Phase A+								
5	EB+	Encoder Phase B+								
6	EZ+	Encoder Phase Z+								
7	ALM(IN24-29)	Alarm IN (be set, can be as general input)								
8	EGND	External Ground								
9	PUL-	Pulse Differential-								
10	DIR-	Directional Differential-								
11	Internal +5V Power	Internal +5V Power								
12	EA-	Encoder Phase A-								
13	EB-	Encoder Phase B-								
14	EZ-	Encoder Phase Z-								
15	15 SERVON(OUT8-13) Axis Enable (can be general out, no current amplification)									
A Pulse-	Pulse-Axis & Encoder (DB15 Female Head) ZMC303/304									

PIN No.	Name	Description
1	EGND	External Power Ground
2	IN40-47/ALM	IN, better do Drive Alarm
3	OUT16 18/ENABLE	OUT, better Drive Enable
4	EA-	Encoder Phase A-
5	EB-	Encoder Phase B-
6	EZ-	Encoder Phase Z-
7	Internal+5V	Internal +5V Power
8	Reserved	Reserved
9	DIR+	Directional Differential+
10	GND	Inner 0V
11	PUL-	Pulse Differential-
12	Reserved	Reserved
13	GND	Inner 0V
14	OVCC	+24V
15	OUT17 19/CLR	OUT, better Drive Alarm Clear
16	IN48-55/INP	IN, better on-position signals
17	EA+	Encoder Phase A+
18	EB+	Encoder Phase B+_
19	EZ+	Encoder Phase Z+
20	GND	Internal 0V
21	GND	Internal 0V
22	DIR-	Directional Differential -
23	PUL+	Pulse Differential +
24	GND	Internal 0V
25	Reserved	Reserved
A Pulse-	Axis & Encoder (DB25 Fe	emale Head) ZMC306BE/308BE

A Pulse-Axis (DB9 Female Head) ZMC316BE

.....

Note: refer to "User Manual" for more models and details.

Zmotion[®]

ZMC308H

ZMC308H high-performance multi-axis motion controller is one standalone controller that supports EtherCAT bus and pulse axis. Itself supports max 8 axes for complex continuous trajectory control.

Applications: SCARA robot, electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing, printing & packaging, textile & garment, stage entertainment equipment, medical equipment, assembly line, etc.

Interfaces

- Axis: up to 24-axis (include virtual-axis)
- ► IO: up to 48 INs & 32 OUTs
- Communication: RS232, RS485, RS422, USB, EtherNET.
- Analog: 4 ADs & 2 DAs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse / double pulse
- Functions:
- 01. support encoder input, it can be configured as handwheel mode.
- 02. interfaces: EtherCAT, single-ended pulse, differential pulse, differential encoder.

- 03. HW hardware comparison output, high-speed latching, PWM.
- 04. 5V/24V laser specialized PWM outputs
- 05. point motion, electronic cam, linear & circular & continuous interpolation, Scara.
- 06. Linux system is built in.
- Performance:
 - 01. max pulse output frequency can reach 10MHz.
 - 02. up to 16 axes for linear / any circular / space arc / helical / elliptic interpolation.
- 03. support multi-machine independent continuous interpolation.

ZMC432H/ZMC432HG

ZMC432H high-performance multi-axis motion controller is one standalone controller that supports EtherCAT bus and pulse axis, and its hardware & software are national produced. Itself supports max 32 axes for complex continuous trajectory control.

Applications: robot (SCARA, Delta, 6-joint), electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing, non-standard equipment, printing & packaging, textile & garment, stage entertainment equipment, medical equipment, assembly line, etc.

CAN = General OUT Rs485 Rs232 USB - USB

ZMC432HG

Functional Features

- Axis: up to 32-axis (include virtual-axis)
- IO: up to 48 INs & 32 OUTs
- Communication: RS232, RS485, RS422, USB, EtherNET.
- Analog: 4 ADs & 2 DAs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse / double pulse or orthogonal pulse
- Functions:

Interfaces

- 01. support Zmotion XPLC function -- configuration display by network
- 02. max pulse output frequncy of each axis is 10MHz
- 03. max 4096 INs & 4096 OUTs by ZCAN or EtherCAT
- 04. axis position limit signal / origin signal can be set as any IN.

- 05. max current of OUT can reach 300mA, it can directly drive some solenoid valves.
- 06. electronic cam & gear, position latch, synchronization, virtual axis.
- 07. hardware comparison output (HW_PSWITCH2), hardware timer, precision output in motion.
- 08. support pulse closed-loop, pitch compensation.
- 09. support Basic multi-file & multi-task programming.
- 10. a variety of program encryption methods to protect your intellectual property rights.
- 11. support power failure detection, power failure storage.
- Performance:
- 01. max pulse output frequency can reach 10MHz.
- 02. support up to 32 axes for linear / any circular / helical / spline interpolation.
- 03. support multi-machine independent continuous interpolation.

ZMC4XX – Pulse

ZMC4XX high-performance multi-axis motion controller is a kind of pulse standalone motion controller. Itself supports max 12 axes, but 32 axes can be expanded to realize complex continuous trajectory control. ZMC4XX – Bus

ZMC4XX high-performance multi-axis standalone motion controller supports EtherCAT bus (N: dual-bus of EtherCAT & RTEX) and pulse. Itself supports max 64 axes EtherCAT (/60 axes RTEX) to realize complex continuous trajectory control.

Applications: robot (SCARA, Delta, 6-joint), electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing, laser, non-standard, printing & packaging, textile & garment, stage entertainment equipment, medical equipment, assembly line, etc.

Functional Features

- Axis: up to 32-axis (include virtual-axis)
- IO: up to 36 INs & 24 OUTs
- ► Communication: RS232, RS485, USB, EtherNET.
- Analog: 2 DAs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse / double pulse / quadrature pulse
- Functions:
- 01. support encoder input, which can be configured as handwheel mode.
- 02. support IO expansion by ZCAN, max 512 INs & 512 OUTs synchronously.
- 03. axis position limit, origin signal can be configured as any IN.
- 04. max output current is 300mA, which can directly drive some solenoid valve.
- 05. electronic cam & gear, position latch, synchronization, virtual axis, comparison output.
- 06. pulse closed-loop, pitch compensation, hardware comparison output (HW_PSWITCH2), hardware timer, precision output in motion, etc.
- 07. support multi-file & multi-task, PC & controller's program work synchronously.
- 08. a variety of encryption methods to protect user's program.
- 09. support power failure detection & power failure storage.
- 10. support several robotic arm algorithms (SCARA, Delta).
- 11. support 2 PWM outputs with 1M frequency.
- Performance:
- 01. max output frequency can reach 10MHz.
- 02. support up to 16 axes for linear/any circular/space arc/helical/elliptic interpolation.
- 03. support multi-machine independent continuous interpolation.

- Axis: up to 64-axis EtherCAT
- IO: up to 40 INs & 32 OUTs
- Communication: RS232, RS485, USB, EtherNET, EtherCAT / EtherCAT & RTEX
- Analog: 2 DAs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse / double pulse / quadrature pulse
- Functions:
- 01. support encoder input, which can be configured as handwheel mode.
- 02. support IO expansion by ZCAN, max 512 INs & 512 OUTs synchronously.
- 03. axis position limit, origin signal can be configured as any IN.
- 04. max output current is 300mA, which can directly drive some solenoid valve.
- 05. electronic cam & gear, position latch, synchronization, virtual axis, comparison out.
- 06. support pulse closed-loop, pitch compensation, hardware comparison output (HW_PSWITCH2), hardware timer, precision output in motion, etc.
- 07. support multi-file (62) & multi-task (22), PC program and controller inner program can work at the same time.
- 08. a variety of encryption methods to protect user's program.
- 09. support power failure detection & power failure storage.
- 10. support several robotic arm algorithms (SCARA, Delta).
- 11. support 12 PWM outputs with 1M frequency.
- Performance:
 - 01. EtherCAT fastest refresh cycle (within 16-axis) is 100µs.
 - 02. max output frequency can reach 10MHz.
 - 03. support up to 16 axes for linear/any circular/arc/helical/elliptic interpolation.
 - 04. support multi-machine independent continuous interpolation.
 - 05. mix interpolation of EtherCAT/RTEX multi-bus-axis + pulse axis.

Model	Image	Axis	En- coder	Total Axes	Hand- wheel	Pulse Fre- quency	Inner , IN & OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	Power Down Store	232	485	Net	ECAT	RTEX	JSE	Size (mm)	Functional Description
ZMC406-V2	(*****(10) 4 (10) 4 (10)	6	6	32	-	10M	24+6/12+6	-	2	4096	32M	22	8000	1	1	1	1	-	1	205*136	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC408CE		8	8	32	1	10M	24+16/16+16	2	2	4096	32M	22	8000	1	1	1	1	-	1	221*144	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC412		12	12	32	-	10M	24+12/12+12	-	2	4096	32M	22	8000	1	2	1	-	-	1	250*164	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC416BE		15+1	3	32	-	10M	24+15/8+15	2	2	4096	64M	22	8000	1	1	1	1	-	1	241*149	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC432-V2]:)](]:)](]:)	32	6	32	-	10M	24+6/12+6	-	2	4096	32M	22	8000	1	1	1	1	-	1	205*136	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC432H	1	32	6	32	-	10M	24+12/12+12	2	2	4096	32M	22	8000	1	1	1	1	-	1	205*136	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC432N	(*****)(*) (******	32	6	38	-	10M	24+6/12+6	-	2	4096	32M	22	8000	1	1	1	-	1	1	216*146	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC464	9	64	3	64	-	10M	24+3/12+3	-	2	4096	32M	22	8000	1	1	1	1	-	1	205*136	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC430N	2000 2010 2010 2010	30	6+4	60	-	10M	24+6/12+6	2	2	4096	32M	22	8000	1	1	1	1	1	1	216*143	point, line, arc, cam, continuous interpolation, robotic arm commands
ZMC460N	5-1-1-5-0-0 	60	6+4	60	-	10M	24+6/12+6	2	2	4096	32M	22	8000	1	1	1	1	1	1	216*143	point, line, arc, cam, continuous interpolation, robotic arm commands

Interfaces

19 —		-26
10 -	$-(\bigcirc / \rightarrow \bigcirc \bigcirc)$	- 18
1 -		-9

PIN No.	Signal	Description	PIN No.	Signal	Description			
1	EGND	External Power Ground	14	OVCC	E+24V OUT (better only for servo IO)			
2	IN24-29/ALM	IN, recommended to rive alarm	15	Reserved	Reserved			
3	OUT12-17/ENABLE	OUT, recommended to drive enable	16	Reserved	Reserved			
4	EA-	Encoder Input	17	EA+	Encoder Input			
5	EB-	Encoder Input	18	EB+	Encoder Input			
6	EZ-	Encoder Input	19	EZ+	Encoder Input			
7	+5V	Power Output	20	GND	Internal Power Ground			
8	Reserved	Reserved	21	GND	Internal Power Ground			
9	DIR+	Servo / Stepper Directional Output	22	DIR-	Servo / Stepper Directional Output			
10	GND	Internal Power Ground	23	PUL+	Servo / Stepper Pulse Output			
11	PUL-	Servo / Stepper Pulse Output	24	GND	Internal Power Ground			
12	Reserved	Reserved	25	Reserved	Reserved			
13	GND	Internal Power Ground	26	Reserved	Reserved			

A Pulse-Axis & Encoder (DB26 Female Head) ZMC4XX

Note: refer to "User Manual" for more models and details.

Laser Scan Controller – ZMC408SCAN Ether CAT

ZMC408SCAN laser galvanometer motion controller integrates laser control, scan control, with bus-axis / pulse-axis control. The controller itself supports 2 groups of XY scan axes (with scan feedback), but 32 axes motion control can be reached for complex continuous trajectory control. Also support hybrid interpolation among axes of scan, bus, pulse.

Laser scan motion controller supports XY2-100 scan protocol, and it can adapt to different functions' lasers, Fiber, UV, Carbon Dioxide.

Applications: metal / non-metal large-format splicing & marking & cutting, ordinary scan marking & welding & cutting, linkage marking & cutting of motion axis + scan axis, laser drilling & forming, etc.

- Axis: up to 32 axes motion control
- ► IO: up to 32 INs & 28 OUTs
- Communication: RS232, RS485, U Disk, Ethernet, EtherCAT
- ► Analog: 2 ADs & 2 DAs, max 256 ADs & 128DAs, 1 specialized AD & 1 specialized DA
- Pulse Mode: directional + pulse / double pulse
- Scan: scan-axis interface, XY2-100 protocol
- Functions:
 - 01. specialized MPG handwheel interface.
 - 02. specialized DB25 laser control interface

- 03. more IOs by ZCAN / EtherCAT, max 4096 isolated INs & OUTs.
- 04. support electronic cam & gear, position latch, synchronous follow, virtual axis, comparison output, etc.
- 05. support linear, circular interpolation, continuous trajectory, robot.
- 06. support 8 high-speed PWM outputs.
- 07. support multi-file & multi-task, and synchronization of controller & PC programs
- Performance:
 - 01. the max pulse output frequency can reach 10MHz.
 - 02. support hybrid interpolation among scan, pulse, and bus axes.
 - 03. the fastest EtherCAT refresh cycle within 16 axes is 100µs.

Zmotion[®]

Models

Model	Image	Axis	En- coder	Total Axes	Scan Axes	Pulse Fre- quency	Laser	Hand- wheel	Inner IN & OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	Power Down Store	232	485	Net	ECAT	Size (mm)
ZMC408SCAN	1	8	4	16	4	10M	2	1	24+8/20+8	2	2	4096	128M	12	8000	1	1	1	1	239*149
ZMC408SCAN-V22		8	4	16	4	10M	2	1	24+8/20+8	2	2	4096	128M	12	8000	1	1	1	1	239*149

ZMC408SCAN-V22 VS ZMC408SCAN: ZMC408SCAN EXIO is replaced by FIBER -- ZMC408SCAN-V22.

Interfaces

ZMC408SCAN-V22

14—	—25
1	_12

PIN No.	Name	Description							
1、4、14	LAGND	Laser Analog Signal Reference Ground							
2、3、13	NC	Reserved							
5	Guide Control OUT32	PIN for Red Light Control OUT (24V)							
б	ACON OUT33	PIN for Reserved OUT (24V)							
7	LaserRequest OUT28	Laser Request OUT (24V)							
8	Program start OUT29	Program Start OUT (24V)							
9	ERST OUT30	Laser Reset OUT (24V)							
10	LASER ON OUT31	Laser Enable OUT (24V)							
11	PWM OUT9	Reserved for PWM, 24V Electric Level							
12	Modulation-	Modulation Signal -							
15	LASER_AD/NC AIN(2)	Reserved for Analog IN, 0-10V, 16-Bit Resolution							
16	LASER_DA/NC AOUT(2)	(for special mode)							
17	Error IN44	Laser Alarm IN (24V)							
18	Emission EN IN45	Laser Emisson IN (24V)							
19	Pow Active IN49	Laser Main Power has ON (24V)							
20	Power ON IN48	Laser System Powered On IN (24V)							
21	Laser standby IN47	Laser in Standby IN (24V)							
22	Ready IN46	Laser in Ready IN (24V)							
23、25	EGND	Reference Ground of Each Digital IN & OUT							
24	Modulation+ OUT8	Modulation Signal +, 24V Electric Level							

PIN No.	Name	Description
1	Clk-	Clock Signal-
14	Clk+	Clock Signal+
2	SYNC-	Synchronization Signal-
15	SYNC+	Synchronization Signal+
3	X-	Scan X Signal-
16	X+	Scan X Signal+
4	Y-	Scan Y Signal-
17	Y+	Scan Y Signal+
5	Z-	Scan Z Signal-
18	Z+	Scan Z Signal+
6	Y RETURN-	Scan Y Feedback Signal-
19	Y RETURN+	Scan Y Feedback Signal+
7	Z RETURN-	Scan Z Feedback Signal-
20	Z RETURN+	Scan Z Feedback Signal+
8	X RETURN-	Scan X Feedback Signal-
21	X RETURN+	Scan X Feedback Signal+
9	NC	-
22	NC	-
10	NC	-
23	GND	Signal Ground, Public End
11	GND	Signal Ground, Public End
24	GND	Signal Ground, Public End
12	NC	-
25	NC	-
13	NC	-

A Laser Power Control Port (DB25 Male Head) ZMC408SCAN

🛦 SCAN (DB25 Female Head) ZMC408SCAN

Note: refer to "User Manual" for more models and details.

Model	Image	Axis	En- coder	Total Axes	Pulse Fre- quency	Inner IN and OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	Power Down Store	232	485	Net	ECAT	USB	Size (mm)	Functional Description
XPLC004E-V2		4	-	12	-	16/16	-	2	32	6144k	6	1024	1	1	1	1	-	160*114.5	point, cam, line
XPLC006E-V2		6	-	12	-	16/16	-	2	32	6144k	6	1024	1	1	1	1	-	160*114.5	point, cam, line
XPLC008E-V2		8	-	16	-	16/16	-	2	32	6144k	6	1024	1	1	1	1	-	160*114.5	point, cam, line
XPLC016E-V2		16	-	16	-	16/16	-	2	32	6144k	6	1024	1	1	1	1	-	160*114.5	point, cam, line
XPLC664E2-V2		6	2	12	500k (single -ended)	32/32	2	2	128	2M	10	1024	1	1	1	1	1	219*135	point, cam, line
XPLC864E2-V2		8	2	12	500k (single -ended)	32/32	2	2	128	2M	10	1024	1	1	1	1	1	219*135	point, cam, line
XPLC1264E2-V2		12	2	16	500k (single -ended)	32/32	2	2	128	2M	10	1024	1	1	1	1	1	219*135	point, cam, line
XPLC1664E2-V2		16	2	32	500k (single -ended)	32/32	2	2	128	2M	10	1024	1	1	1	1	1	219*135	point, cam, line

Interfaces

XPLC864E2-V2

Note: refer to "User Manual" for more models and details.

XPLC Series Controller

XPLC economical multi-axis standalone motion controller is compatible with EtherCAT and pulse, and supports PLC (ladder diagram) programming. Itself supports up to 32 axes motion control to realize point to point, linear motion, electronic cam, etc.

Applications: electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing equipment, non-standard equipment, printing & packaging, textile & garment, medical equipment, assembly line, robot, etc.

Functional Features

- Axis: up to 32-axis (include virtual-axis, EtherCAT, pulse axis)
- ► IO: up to 32 INs & 32 OUTs
- Communication: RS232, RS485, EtherNET.
- Analog: 2 DAs & 2 ADs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse / double pulse
- Functions:
- 01. support encoder input, which can be configured as handwheel mode.
- 02. support IO expansion by ZCAN, max 4096 INs & 4096 OUTs synchronously.
- 03. axis position limit, origin signal can be configured as any IN.
- 04. max output current is 300mA, which can directly drive some solenoid valve.

05. support electronic cam, electronic gear, position latch, synchronous follow, virtual axis, etc.

- 06. support multi-file & multi-task, programs of PC & controller can work synchronously.
- 07. a variety of encryption methods to protect user's program.
- 08. support power failure detection & power failure storage.
- Performance:
 - 01. EtherCAT fastest refresh cycle is 1ms.
 - 02. max pulse output frequency can reach 500kHz.
 - 03. support up to 32 axes for point motion, linear motion, and electronic cam.
 - 04. support multi-machine independent continuous interpolation.

XPLC120H

XPLC120H multi-axis motion controller is one standalone controller that supports EtherCAT bus and pulse axis. Itself supports max 20 axes, but can be expanded to 32 axes (include virtual axis). It can achieve point motion, electronic cam, linear & circular & helical interpolation.

Applications: electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing, non-standard equipment, printing & packaging, textile & garment, medical equipment, assembly line, etc.

- Axis: up to 32-axis (include virtual-axis)
- ► IO: up to 32 INs & 32 OUTs
- Communication: RS232, RS485, CAN, EtherCAT, EtherNET.
- Analog: 2 ADs & 2 DAs, max 256 ADs & 128 DAs by ZCAN expansion
- Pulse Mode: directional + pulse / double pulse
- Functions:
- 01. support encoder input, it can be configured as handwheel mode.
- 02. max 4096 INs & 4096 OUTs can be expanded by ZCAN.
- 03. axis position limit signal / origin signal can be set as any IN.

- 04. max output current is 500mA, it can directly drive some solenoid valves.
- 05. electronic cam & gear, position latch, synchronization, virtual axis.
- 06. support multi-file & multi-task programming, PC & controller inner programs can work at the same time.
- 07. a variety of program encryption ways to protect your intellectual property rights.
- 08. support power failure detection, power failure storage.
- Performance:
 - 01. EtherCAT fastest refresh period is 1ms.
 - 02. max pulse output frequency can reach 500kHz.
 - 03. support up to 32 axes for superposition, electronic cam, linear/circular interpolation.

Model	Image	Axis	En- coder	Tota Axes	Pulse Fre- quency	Inner IN and OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	Power Down Store	232	485	NET	ECAT	USB	Size (mm)	Functional Description
XPLC108H		8	3	32	500k	32/32	2	2	1024	2M	14	1024	1	1	1	1	1	219*135	point, cam, line, arc
XPLC116H		16	3	32	500k	32/32	2	2	1024	2M	14	1024	1	1	1	1	1	219*135	point, cam, line, arc
XPLC120H		20	3	32	500k	32/32	2	2	1024	2M	14	1024	1	1	1	1	1	219*135	point, cam, line, arc

System Structure

XPLC300

XPLC300 multi-axis standalone motion controller is one EtherCAT vertical controller that supports PLC (ladder diagram) programming. Itself supports up to 12 EtherCAT axes, 16 axes motion control can be extended to realize point motion, linear motion, electronic cam, etc.

Applications: electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing equipment, non-standard equipment, printing & packaging, textile & garment, medical equipment, assembly line, robot, etc.

- Axis: up to 16-axis (include virtual-axis, EtherCAT axis)
- ► 10: 1 IN, no OUT
- Communication: RS232, RS485, EtherNET, EtherCAT.
- Functions:
 - 01. support IO expansion by EtherCAT.
- 02. local can expand 16 IO submodules / 8 AIO submodules.
- 03. support reading & writing USB files and updating program for remote maintain.
- 04. support PLC, Basic, HMI programming.

- 07. support second development of all kinds of PC languages.
- 08. a variety of encryption methods to protect user's program.
- 09. support power failure detection & power failure storage.
- Performance:
 - 01. EtherCAT fastest refresh cycle is 1ms.
 - 02. support up to 16 axes for point motion, linear motion, electronic cam.
 - 03. support multi-machine independent continuous interpolation.
- 05. support multi-file & multi-task programming, programs of PC and controller can work at the same time.
- 06. support point motion, synchronous motion, motion superposition, electronic cam, linear interpolation, etc.

Models

Model	Image	Axis	Total Axes	Inner IN and OUT	IO Sub- Modules (local extend)	AIO Sub- Modules (local extend)	Axis Motion Buffer	Space	Task	Power Off Store	232	485	Net	ECAT	USB	Size (mm)	Functional Description
XPLC304E		4	16	1/0	16	8	128	6144kB	12	1024	1	1	1	1	1	108*32*95	point, electronic cam, linear interpolation
XPLC306E		6	16	1/0	16	8	128	6144kB	12	1024	1	1	1	1	1	108*32*95	point, electronic cam, linear interpolation
XPLC308E		8	16	1/0	16	8	128	6144kB	12	1024	1	1	1	1	1	108*32*95	point, electronic cam, linear interpolation
XPLC312E		12	16	1/0	16	8	128	6144kB	12	1024	1	1	1	1	1	108*32*95	point, electronic cam, linear interpolation

Interfaces

	State Indication Led	No.	Name		Funct	ional De	scription
	USB			POW	Power Led	Green	Power ON ON
	EtherNET	1	State Indication Led	RUN	Run Led	Green	Run Well ON
				ALM	Error Led	Red	Run Error ON
Exter CAT	EtherCAT	2	USB		standard USB p	ort for co	nnecting to U disk
23273	1	3	EtherNET	star	idard Ethernet to	link with	PC / other net devices
232RX GND 485A	Next (submodule)	4	EtherCAT	S	Standard Etherne	et to link v	vith EtherCAT slave
4858 IN0	User Terminal	5	User Terminal		9 pin port, po	ower, RS2	32, RS485, IN0
GND EARTH		6	For Next after Local Expansion	conn	ect to next sub-	module, n	ot support hot plugging
6-2-2							

Note: refer to "User Manual" for more models and details.

How to Install Local Expansion

It can connect to ZMI03100 series expansion sub-module through "interface for next connecting".

How to Install:

- ► open all modules' clearance snaps.
- ► connect front level expansion interface of sub-module to behind level expansion interface of XPLC300 controller (/ sub-module).
- ► close all modules' clearance snap.

VPLC516E System Structure

Support QT Programming 🛛 💷

Machine Vision Functions

Positioning | Measurement | Detection | Identification

Motion Control Functions

Robot Algorithm | Vision Fly-Shooting PWM & Speed Synchronized

Position Precision Output PSO (1D/2D/3D)

Electronic Cam | Multi-Axis Interpolation | Small-Segment Look-Ahead

- one-stop-shop development by ZDevelop
- develop PLC, Basic, HMI, Motion, Vision, etc.
- replace PC+Windows+Vision algorithm+control card
- support global mainstream cameras & bus servos
- easy to develop vision by Basic / PLC
- direct data interaction, faster one level than PCI/PCIe
- expand Basic commands by C, real-time & flexible

Zdevelop Software Features

It integrates with Basic, PLC, HMI, and machine vision.

RTSys (ZDevelop) is a one-stop-shop development software that integrates machine vision and motion control functions. It supports secondary development of ZBasic, ZPLC (ladder diagram), ZHMI, and machine vision ZVision. What's more, it supports rich functions for complex motion control development, like, hybrid programming, real-time simulation, online tracking & diagnosis & debugging, etc., and for vision control, it can rapidly realize vision positioning, measurement, identification, detection.

Easy to Develop Project

- No need to install, develop the project directly.
- It also can simulate and debug local graphics when there is no controller.

Vision Functional Features

Vision Positioning

Blob Analysis

Vision Measurement

Detection & Recognition

VPLC516E

VPLC516E is one EtherCAT vision motion controller. Itself supports max 16 axes, but can be expanded to 32 axes to achieve complex motion control and machine vision applications (motion: electronic cam, linear, circular, continuous processing, robotic arm, etc., vision: positioning, measurement, detection, identification).

Applications: 3C electronics, lithium batteries, printing & packaging, food & medicine, robot, assisting robots, semiconductors, laser, etc.

- Axis: up to 32 EtherCAT axes (include virtual-axis)
- ► IO: 16 INs & 16 OUTs
- Communication: RS232, RS485, USB, EtherNET, EtherCAT, CAN
- Analog: max 128 ADs & 64 DAs by ZCAN expansion
- Pulse Mode: directional + pulse
- Functions:
 - 01. support vision fly-shooting.
 - 02. 1 "handwheel" interface (12 Ins).
 - 03. 2 camera interfaces (USB3.0 & GiGE).
 - 04. max 4096 INs & 4096 OUTs can be extended by EtherCAT.
 - 05. 2 precision outputs, for position synchronized output (PSO).
 - 06. support 30+ robot algorithms (Delta, SCARA, 6-joint, dual rotate, etc.).

- 07. support electronic cam, line, arc, continuous processing, etc.
- 08. a variety of encryption methods to protect user's program.
- 09. support power failure detection & power failure storage.
- 10. support ZBasic multi-file & multi-task programming.
- Performance:
 - 01. EtherCAT fastest refresh cycle (within 16-axis) is 100µs.
- 02. max pulse output frequency can reach 500kHz.
- 03. support up to 16 axes for interpolations of line, arc, helical, ellipse.
- 04. support multi-machine independent continuous interpolation.
- 05. direct data interaction, faster one level than PCI/PCIe
- 06. Linux system, replace "IPC+vision+motion".

Vision Function Description

Image Preprocessing

Highlight the feature to be detected, eliminate image noise & interference to extract, identify, detect the feature accurately. (binarization, histogram processing, geometric transformation, filtering, image enhancement, etc.)

Applications: scratch detection, contour extraction, blob analysis, etc.

Camera Calibration

The conversion between the image coordinates and the world coordinate system can be realized by coordinate calibration.

			生林列表		
	描号	图像呈标2	副登兰村?	世界主新2	世界重新
	0	376, 36	195.96	8.09	U. 10
666	1	660, 24	192.98	5.00	0.10
	- 2	945, 94	191.07	18,00	0.10
	3	7TE.99	481.94	6,98	9, 10
	4	664.27	479, 74	5.00	2.60
	5	961.83	416.47	10.00	5,10
标定参数	:6	231.05	781.85	15,00	11.40
标定典型 就估好定 最小证明 10	.7	668.05	764.14	5,00	18.40
可比重 120 最大面表 20000	1	955.92	763,45	10,00	111.00
· · · · · · · · · · · · · · · · · · ·			r		
基本操作	· Anto	(and the second		附近的单	
[@\$mark&] [#77] [EA]	34	(marks/)	#1947-# 0	和大证券 1,512	平均快差 0,832

Applications: visual positioning's offset correction, length / area measurement, etc.

Vision Measurement

Measure the image's target or area feature, which mainly are length, circle, angle, arc, size measurement, etc.)

Applications: workpiece size measurement, assembly detection, etc.

Recognition & Detection

Recognize 1D bar code, 2D codes, characters in a specific area.

Applications: assembly line material testing, food package testing, product information acquisition and entry, etc.

Vision Positioning

By learning a specific template or fixed feature, then find which feature meets the conditions in the detection area, and return its coordinate (in the image).

Applications: assembly line positioning, robotic arm grasping, etc.

Blob Analysis

Binarize and segment the image in ROI area, then detect it in the connection area to obtain Blob spots.

定任仲计小核				相机操作	
			田市市地田	ii ii	扫描相相
			许战灭寨		伊止东非
			单次采集		
	10 m			位用学校	
	10		兼小宴前	60920	
	•		最大互利	20900	版
				利志学	化理
			燕	自使った	手动南值
			Œ	200 5	128
检测结果	王法设置	松油具作		演曲	265
检测状态 存在	601关型	例试 伊土) (H	15.00	1
检测直积 77982	和利	16日	7	加三利	1.1

Applications: product counting, product defect testing, etc.

Defect Detection

Defect defects on the surface of the workpiece, like, spots, pits, scratches, color error, etc.

3	ΡÆ			-	处理图		相利	扫描相机	单次系集
1							業業	请编系师	伊止乐學
Zm	10	tio	n				12	加坡出型 松淡方向	ff æ XY
	-						将失敗	检测尺寸 对北亚	5 20
Paus	- [54	- I	期长	2	1	制参数	松桃尺寸 対比度 最小面积 最大面积	5 20 2000 7000
PGUS K	·	3 4 0	新祝 [5433.00	周長 151.06	X 570, 35	1 203, 04	· 別 テ 款 - 粒	松桃尺寸 対比度 最小百和 最大百利 余丈	5 20 2000 7000
产品状态 メ 気候数量	結星列表	194 0 1	東根 2533.00 2531.00	周長 355.06 642.54	X 570, 35 1110, 26	1 203.04 724.01	初步数 检测器	松沸尺寸 対比正 最小百和 最大有利 発式 采行	5 20 2000 7000 保護委員 優長

Applications: phone glass cover scratch detection, metal surface scratch detection, etc.

Vision Fly-Shooting

(motion control) "precision output" & "PSO" + machine vision functions for vision fly-shooting -- "high-speed" & "high-precision" of intelligent equipment.

Applications: robotic visual sorting, visual loading & unloading, etc.

Models

Model	Image	Axis	En- codei	Tota Axes	Pulse Fre- quency	Inner AD	Inner DA	Р₩М	Inner IN and OUT	Axis Motion Buffer	Space	Task	Powei off Store	232	485	Net	ECAT	HDMI	USB 2.0	USB 3.0	SD Card Slot	Size (mm)	Functional Description
VPLC516E-4		4	1+1	32	500k single ended	-	-	2	16/16	4096	64M	22	8000	1	1	2	1	1	2	2	1	162*47*119	point, line, arc, cam, continuous motion, robotic arm command
VPLC516E-6		6	1+1	32	500k single ended	-	-	2	16/16	4096	64M	22	8000	1	1	2	1	1	2	2	1	162*47*119	point, line, arc, cam, continuous motion, robotic arm command
VPLC516E-8		8	1+1	32	500k single ended	-	-	2	16/16	4096	64M	22	8000	1	1	2	1	1	2	2	1	162*47*119	point, line, arc, cam, continuous motion, robotic arm command
VPLC516E		16	1+1	32	500k single ended	-	-	2	16/16	4096	64M	22	8000	1	1	2	1	1	2	2	1	162*47*119	point, line, arc, cam, continuous motion, robotic arm command

Interfaces

PIN No.	Signal	Description	PIN No.	Signal	Description
1	H-5V	Supply Power for Handwheel	9	Hs3	Select Axis 3
2	HA-	Encoder A Phase Signal	10	HS4	Select Axis 4
3	HB-	Encoder B Phase Signal	11	EGND	External Power Ground
4	HEMGN	Emergency Stop	12	HS5	Select Axis 5
5	NC	-	13	HS2	Select Axis 2
6	HX1	Select X1 Ratio	14	HS1	Select Axis 1
7	HX10	Select X10 Ratio	15	Hs0	Select Axis 0
8	HX100	Select X100 Ratio	-	-	

A Hanwheel Interface (DB15 Female Head) VPLC516E

Note: refer to "User Manual" for more models and details.

VPLC532E

VPLC532E is one EtherCAT vision motion controller. Itself supports max 32 axes to achieve complex motion control and machine vision applications (motion: electronic cam, linear, circular, continuous processing, robotic arm, etc., vision: positioning, measurement, detection, identification).

Applications: 3C electronics, lithium batteries, printing & packaging, food & medicine, robot, assisting robots, semiconductors, laser, etc.

- ► Axis: up to 32 EtherCAT axes
- ► IO: 24+6 INs & 12+6 OUTs
- Communication: RS232, RS485, USB, EtherNET, EtherCAT, CAN
- Analog: 2 DAs, max 520 ADs & 520 DAs by ZCAN expansion
- Pulse Mode: directional + pulse / dual pulse
- Functions:
 - 01. support vision fly-shooting.
 - 02. 6 pulse-axis interfaces on board.
 - 03. 2 camera interfaces (USB3.0 & GiGE).
 - 04. max 4096 INs & 4096 OUTs can be extended by EtherCAT.
 - 05. 2 precision outputs, for position synchronized output (PSO).
 - 06. support 30+ robot algorithms (Delta, SCARA, 6-joint, dual rotate, etc.).

- 07. support electronic cam, line, arc, continuous processing, etc.
- 08. a variety of encryption methods to protect user's program.
- 09. support power failure detection & power failure storage.
- 10. support ZBasic multi-file & multi-task programming.
- ► Performance:
- 01. EtherCAT fastest refresh cycle (within 16-axis) is 100µs.
- 02. max pulse output frequency can reach 500kHz.
- 03. support up to 16 axes for interpolations of line, arc, helical, ellipse.
- 04. support multi-machine independent continuous interpolation.
- 05. direct data interaction, faster one level than PCI/PCIe
- 06. Linux system, replace "IPC+vision+motion".

Model	Image	Axis	En- code	Tota rAxes	Pulse Fre- quency	Inner AD	Inner DA	PWM	Inner IN and OUT	Axis Motion Buffer	Space	Task	Power off Store	232	485	Net	ECAT	HDMI	USB 2.0	USB 3.0	SD Card Slot	Size (mm)	Functional Description
VPLC532E-6		6	6	32	10M	-	2	2	24+6/12+6	4096	64M	22	8000	1	1	2	1	1	2	2	1	184*140	point, line, arc, cam, continuous motion, robotic arm command
VPLC532E-16		16	6	32	10M	-	2	2	24+6/12+6	4096	64M	22	8000	1	1	2	1	1	2	2	1	184*140	point, line, arc, cam, continuous motion, robotic arm command
VPLC532E		32	6	32	10M	-	2	2	24+6/12+6	4096	64M	22	8000	1	1	2	1	1	2	2	1	184*140	point, line, arc, cam, continuous motion, robotic arm command

Interfaces

PIN No.	Signal	Description	PIN No.	Signal	Description
1	EGND	External Power Ground	14	OVCC	E+24V Output (better only for Servo IO)
2	IN24-29/ALM	General IN, recommended to do Drive Alarm	15	OUT18-23/CLR	Digital OUT, better do Drive Alarm Clear
3	OUT12-17/ENABLE	General OUT, recommended to do Drive Enable	16	IN30-35/INP	Digital IN, better do on-position
4	EA-	Encoder Input	17	EA+	Encoder Input
5	EB-	Encoder Input	18	EB+	Encoder Input
6	EZ-	Encoder Input	19	EZ+	Encoder Input
7	+5V	Power Output	20	GND	Internal Power Ground
8	Reserved	Reserved	21	GND	Internal Power Ground
9	DIR+	Servo / Stepper Directional Output	22	DIR-	Servo / Stepper Directional Output
10	GND	Internal Power Ground	23	PUL+	Servo / Stepper Pulse Output
11	PUL-	Servo / Stepper Pulse Output	24	GND	Internal Power Ground
12	Reserved	Reserved	25	Reserved	Reserved
13	GND	Internal Power Ground	26	Reserved	Reserved

A Pulse & Encoder (DB26 Female Head) VPLC532E

Interfaces

Order Information

H a r d w a r e V P L C 7 1 0 A 2 0 3 V P L C 7 1 1 A 2 0 1	 Product Series CPU Model 	Software $\frac{A \times 6 4}{1} = \frac{M \times 8}{2} = \frac{H \times 4}{3} = \frac{Z \times 4}{4} = \frac{R}{5} = \frac{Y \times 4}{6}$
V P L C 7 1 1 B 2 0 1 V P L C 7 1 1 B 5 0 1	3 EtherNET Number	1 64 Axes (6-128) 4 Vision
0 284	4 Hardware Version No.	 2 Motion Control 6 R1 Ordinary Robot R6 6-Joint & Special Robots
VPLC712A401-AX64	I-M08-HW-ZV-R6-YYY	3 PSO 6 YYYY – User Custom Functions

VPLC7XX Controller

lodbus

VPLC7XX is one IPC vision motion controller based on x86, and it matches with Zmotion researched (national produced) Windows realtime motion soft kernel "MotionRT", then VPLC7XX becomes real-time motion controller or real-time PLC. VPLC7XX supports EtherCAT. Motion control can be 4-240 axes, for linkage, up to 16 axes. And the minimal period is 500us. Moreover, it is with powerful functions (√highspeed & high-precision). Specifically, some required functions in automatic industry, high-speed DI/D0, pulse control, handwheel control, etc.

Applications: high-speed & high-precision -- semiconductor, 3C electronics, new energy, automobile production line, laser, etc.

VPLC710 Hardware Parameters

01. x86 high-performance CPU -- max 240 axes synchronous motion by EtherCAT
02. interfaces on board -- RS232, RS485, EtherNet, EtherCAT, USB2.0, USB3.0
03. 16 DI -- 4 (high-speed color patch latch), 2 (high-speed single-ended encoder)
04. 16 DO -- 4 (high-speed single-ended pulse), 4 groups of high-speed PWM
05. support VGA, HDMI display, and dual net-ports' IP can be different.

VPLC711 Hardware Parameters

- 01. x86 high-performance CPU -- 64 axes synchronous motion (1ms) by EtherCAT
- 02. interfaces on board -- RS232, RS485, EtherNet*5, EtherCAT, USB3.0*4
- 03. 20 DI -- 4 (high-speed color patch latch), 2 (high-speed single-ended encoder)
- 04. 20 DO -- 4 (high-speed single-ended pulse), 4 groups of high-speed PWM
- 05. support VGA, HDMI display, and multiple net-ports' IP can be different.

Motion Control Functions

point to point, electronic cam, linear interpolation, circular interpolation, continuous trajectory processing, robot. high-speed PSO OUTs on the board, support 1D / 2D / 3D high-speed position synchronized output. Applications can be vision fly-shooting, high-speed dispensing, laser.

Machine Vision Functions

Positioning

Blob Analysis

nalysis Measurement

Detection & Recognition

59

VPLC711 XYR Motion Control Solution

XYR (XY+R) joint control is used for space trajectory. While axis R is turning, XY motion axes will follow with product's position and angle, that is, real-time adjust XY (when the product's position & angle are changed), then it can make XY end processing points be consistent with product's surface position and attitude all the time, namely, XYR synchronous motion is realized.

Standard XYR Structure

Processing Trajectory

Applications: mobile phone / tablet computer curve appearance defects detection, middle frame polishing, curve dispensing, square battery appearance detection, battery top cover laser welding, etc.

VPLC711 3D Curve Appearance Detection Solution

In XYR curve appearance detection, XYR axes makes the product do continuous motion, then put one line scan camera on the side to take photo for the frame, and sample photos at the curve with same space by 2D PSO function, at last, one clear frame image will be generated, next, it's time to do vision appearance defects detection.

XYR Curve Appearance Detection

Appearance Line-Scan

Detection Processes:

(1) camera center line always is perpendicular to product surface (camera center line at curve is perpendicular to tangential direction).
(2) the distance between camera and product keeps the same, in any position, L1=L2.

Trajectory Follow Control

By high-precision single turntable XYR linkage algorithm, in rotation, XY axes follow and synchronize with the product's position and angle in X, Y directions in this way, the distance and angle from line-scan camera / tool to product's any distance and angle are the same.

Hardware Position Comparison Output PSO

By 2D hardware position comparison output PSO, line-scan camera can sample pictures at high-speed and with equal space, that is, make shooting and product motion trajectory synchronize precisely, then high quality image at circular or corner can be obtained.

PSO controls pulses evenly distributed in space

00000000000000

Rapid Path Planning

a. support 2D CAD mapping, can be DXF, PLT, AI ,etc.

b. size parameters can be set directly, length, width, chamfer radius.

参数设置														
被检测物体	公长度:	€: 0.00		mm	直线速度:	0.00	mm/s							
被检测物体	测物体宽度: 0.00		mm	拐角速度:	0.00	mm/s								
曲面	〕半径:	0	.00	mm										
当前位置														
X轴: 0.0	00	Y轴:	0.00	R轴:	0.00									
虚拟X轴:	0.00	芯	ē找以Y车由:	0.00										

Motion Controller: Laser Scan + Machine Vision

VPLC504SCAN is a kind of standalone controller that integrates machine vision, laser control, scan control, bus axis / pulse axis control. The controller itself is with Linux system, laser and scan specialized interfaces. For vision, it supports vision positioning, measurement, identification, detection. For motion control, up to 16 axes for some complex motion control, like, electronic cam, linear, circular, continuous interpolation, robot, etc. Moreover, it can achieve hybrid interpolation among scan axis, bus axis, pulse axis.

VPLC504SCAN supports XY2-100 scan protocol, which can be applied in offline or online vision marking, soldering, cutting. And different functions' lasers can be matched, fiber, ultraviolet, carbon dioxide.

► Axis: up to 16 axes	03. cam & gear, position latch, synchronization, hardware comparison OUT.
► IO: max 28 INs and 16 OUTs	04. support linear & circular interpolation, continuous trajectory, robot.
Communication: RS232, RS485, USB, Ethernet, EtherCAT	05. support 4 high-speed PWM outputs.
► Analog: 2 DAs, max 256 ADs & 128 DAs	06. \checkmark multi-file & multi-task: PC & controller programs can work synchronously
Pulse Mode: directional + pulse / dual-pulse	07. vision positioning, measurement, identification and detection.
Scan: specialized scan interface, XY2-100 protocol.	► Performance
\blacktriangleright Laser: specialized laser interface (TTL OUT), one specialized AD & one specialized DA	01. the max pulse output frequency can reach 10MHz.
Functions:	02. support hybrid interpolation among scan axis, bus axis, pulse axis.
01. axis encoder interface can be configured as handwheel.	03. the fastest refresh cycle of EtherCAT within 16 axes is 100us.
02. max 4096 inputs & 4096 outputs synchronously by ZCAN / EtherCAT.	04. inner Linux system - replace "IPC + vision + motion control + scan control".

Models

Model	Image	Axis	En- coder	Scan Axis	Total Axes	Pulse Fre- quency	Inner AD	Inner DA	PWM	Inner IN and OUT	Axis Motion Buffer	Space	Task	Power Down Store	232	485	NET	ECAT	HDMI	USB 2.0	USB 3.0	SD Card	Size (mm)	Functional Description
VPLC504SCAN		4	2	2	16	10M	-	2	4	24+4/12+4	4096	64M	26	8000	1	1	2	1	1	2	2	1	178*116	point, line, arc, cam, continuous motion, robotic arm command

Interfaces

VPLC504SCAN

14—	25	5
	$\left(\bigcirc \left(\begin{smallmatrix} \bullet $	
1—	13	3

PIN No.	Signal	Description	PIN No.	Signal	Description	PIN No.	Signal	Description
1-8	P0-P7	5VTTL, Power Setting, 8bits, Power range (0-255)	1	EGND	External Power Ground	14	OVCC	+24V Out (better only for Servo IO)
9	PLATCH	Power Latch, TTL Output	2	ALM	IN, better to do Drive Alarm	15	CLR	General OUT, better to do Drive Alarm Clear
10、14	GND	Signal Ground	3	ENABLE	OUT, better to do Drive Enable	16	INP	General IN, better to do on-position Signal
16、21 11、12	SGIN0-3	Laser State Input, 5VTTL	4	EA-	Encoder Input	17	EA+	Encoder Input
17	VCC	5V Voltage, for IO Coupler Isolation	5	EB-	Encoder Input	18	EB+	Encoder Input
18	МО	Main Oscillator Switch, TTL OUT	6	EZ-	Encoder Input	19	EZ+	Encoder Input
19	AP	Power Amplifier Switch Signal, TTL OUT	7	+5V	Power Output	20	GND	Digital Ground
20	PRR	Repeat Pulse Frequency Signal, TTL OUT	8	Reserved	Reserved	21	GND	Digital Ground
22	RedLight 脉宽调节使能	Laser's Red Led (reused as "Pulse Width Adjust ENABLE", TTL OUT)	9	DIR+	Servo/Stepper Directional OUT	22	DIR-	Servo/Stepper Directional OUT
23	EMSTOP	Emergency Stop Signal, TTL OUT	10	GND	Digital Output	23	PUL+	Servo/Stepper Pulse OUT
24	DA	0-10V DA (add)	11	PUL-	Servo/Stepper Pulse OUT	24	GND	Digital Ground
25	AD	0-5V AD (add)	12	Reserved	Reserved	25	Reserved	Reserved
13	AGND	(add)	13	GND	Digital Ground	26	Reserved	Reserved

🛦 Laser: Laser Control Port

▲ Pulse-Axis & Encoder (DB26 Female Head)

A Pulse-Axis & Encoder (DB26 Female Head)

Network Motion Control Card

Pulse Network Motion Control Card System Structure

Bus Network Motion Control Card System Structure

ECI Network IO Card

Network IO control card, which supports IO and AIO expansion.

- ► IO: 16 INs & 16 OUTs (ECI0032), 32 INs & 32 OUTs (ECI0064),
- ► Communication: RS232, EtherNET
- ► Analog: support ZCAN expansion, max 128 ADs & 64 DAs.
- ► Functions:
 - 01. support ZCAN expanding IO, 256 inputs and 256 outputs can be expanded at the same time.
 - 02. max output current can reach 300mA, which directly drive some solenoid valve.
 - 03. support multi-file programming, PC program and controller inner program can work simultaneously.
 - 04. a variety of encryption methods to protect your program.
 - 05. it can be used for ZCAN slave station expansion.

Models

Model	Image	Axis	Encoder	Total Axes	Inner IN and OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	232	422	485	NET	USB	Size (mm)	Functional Description	
ECI0016PA		0	0	0	8/8	12 (16bit)	2 (12bit)	-	Зk	-	1	-	-	1	-	150*114	8 IN & 8 OUT (with over-current protection)	
EC10032		0	0	0	16/16	-	-	-	Зk	-	1	-	-	1	-	150*114	16 IN & 16 OUT (with over-current protection)	
ECI0032B		0	0	0	16/16	-	-	-	Зk	1	1	-	-	1	-	150*114	16 IN & 16 OUT (with over-current protection) can run offline	
EC10064		0	0	0	32/32	-	-	-	3k	-	1	-	-	1	-	192*129	32 IN & 32 OUT (with over-current protection)	
ECI0064B		0	0	0	32/32	-	-	-	3k	1	1	-	-	1	-	192*129	32 IN & 32 OUT (with over-current protection) can run offline	
ECI0064C		0	0	0	32/32	-	-	-	3k	1	1	-	-	1	-	194*110	32 IN & 32 OUT (with over-current protection) can run offline	

Interfaces

ECI0064

ECI1000 Series Card

ECI1000 economical multi-axis motion control card is one pulse network card. Itself supports max 4 axes, 6 axes motion control can be extended to realize simple control, linear, circular, helical interpolation, etc.

Applications: within 6 pulse axes -- electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing equipment, assembly line, etc.

- Axis: up to 6-axis (include virtual-axis)
- ► IO: up to 36 INs & 12 OUTs
- Communication: RS232, EtherNET
- Analog: support ZCAN expansion, max 128 ADs & 64 DAs
- Pulse Mode: directional + pulse / dual-pulse
- Functions:
 - 01. support encoder input, which can be configured as handwheel mode.
 - 02. max 256 INs & 256 OUTs can be expanded by CAN synchronously.
 - 03. axis position limit, origin signal can be configured as any IN.

- 04. max output current is 300mA, it can directly drive some solenoid valve.
- 05. support electronic cam & gear, position latch, synchronization, virtual axis
- 06. support multi-file & multi-task.
- 07. a variety of encryption methods to protect user's program.
- Performance:
 - 01. max pulse output frequency can reach 5MHz.
 - 02. support up to 6 axes for linear, circular, helical interpolation.
 - 03. support multi-machine independent continuous interpolation.

Model	Image	Axis	Encoder	Total Axes	Pulse Fre quency	Inner IN and OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	232	422	485	NET	USB	Size (mm)	Functional Description
ECI1308		3	1 (24V)	6	5M	36/12	-	-	128	2k	1	1	-	-	1	-	205*138	point, line, arc, cam, continuous interpolation
ECI1408	aline and and and 11 24 24	4	1 (24V)	б	5M	36/12	-	-	128	2k	1	1	-	-	1	-	205*138	point, line, arc, cam, continuous interpolation

Interfaces

ECI1408

ECI2000 -- Pulse

ECI2000 economical multi-axis motion control card is one pulse and modular type network card. Itself supports max 6 axes, 12 axes motion control can be extended to realize simple control, linear, circular, helical interpolation, etc. ECI2000 -- Bus

ECI282X economical multi-axis motion control card is one bus and modular type network card. Itself supports max 8 axes, 16 axes motion control can be extended to realize simple control, linear, circular, helical interpolation, etc.

Applications: within 12 pulse axes -- electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing equipment, assembly line, etc.

Functional Features

- Axis: up to 12-axis (include virtual-axis)
- ► IO: up to 30 INs & 20 OUTs
- Communication: RS232, EtherNET
- Analog: support ZCAN expansion, max 128 ADs & 64 DAs
- Pulse Mode: directional + pulse / dual-pulse
- Functions:
 - 01. support encoder input, which can be configured as handwheel mode.
 - 02. max 256 INs & 256 OUTs synchronously can be expanded by ZCAN.
 - 03. axis position limit, origin signal can be configured as any IN.
 - 04. max output current is 300mA, it can directly drive some solenoid valve.
 - 05. support electronic cam & gear, position latch, synchronization, virtual axis.
 - 06. support multi-file & multi-task programming.
 - 07. a variety of encryption methods to protect user's program.
- Performance:
- 01. max pulse output frequency can reach 10MHz.
- 02. support up to 12 axes for linear, circular, helical interpolation.
- 03. support multi-machine independent continuous interpolation.

- Axis: up to 16-axis (include virtual-axis)
- ► IO: up to 40 INs & 32 OUTs
- Communication: RS232, EtherNET, EtherCAT, CANopen
- Analog: support ZCAN expansion, max 128 ADs & 64 DAs
- Pulse Mode: directional + pulse / dual-pulse
- Functions:
- 01. support encoder input, which can be configured as handwheel mode.
- 02. max 256 INs & 256 OUTs synchronously can be expanded by ZCAN.
- 03. axis position limit, origin signal can be configured as any IN.
- 04. max output current is 300mA, it can directly drive some solenoid valve.
- 05.electronic cam & gear, position latch, synchronization, virtual axis.
- 06. support multi-file & multi-task programming.
- 07. a variety of encryption methods to protect user's program.
- Performance:
- 01. max pulse output frequency can reach 10MHz.
- 02. support up to 16 axes for linear, circular, helical interpolation.
- 03. support multi-machine independent continuous interpolation.
Models

Model	Image	Axis	En coder	Hand wheel	Total Axes	Pulse Fre quency	Inner IN and OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	232	ECAT	NET	USB	Size (mm)	Functional Description
ECI2408	(4	4	-	12	10M	24+4/8+4	-	-	128	4k	1	1	-	1	-	201*134	point, line, arc, cam, continuous interpolation
ECI2608	7 Tét) (* 90) * * *	6	6	-	12	10M	24+6/8+6	-	-	128	4k	1	1	-	1	-	201*134	point, line, arc, cam, continuous interpolation
ECI2418B	() () ()	4	4	1	12	10M	24+8/16+4	2	2	128	4k	1	1	-	1	-	220*139	point, line, arc, cam, continuous interpolation
ECI2618B	()) ()) ()) ())	6	6	1	12	10M	24+12/16+6	2	2	128	4k	1	1	-	1	-	220*139	point, line, arc, cam, continuous interpolation
ECI2A18B	()) ()) ()) ())	10	6	1	12	10M	24+12/16+6	2	2	128	4k	1	1	-	1	-	220*139	point, line, arc, cam, continuous interpolation
ECI2618BL5/L24	100	6	6	1	12	10M	24+12/16+6	2	2	128	4k	1	1	-	1	-	220*139	point, line, arc, cam, continuous interpolation
ECI2A18BL5/L24		10	6	1	12	10M	24+12/16+6	2	2	128	4k	1	1	-	1	-	220*139	point, line, arc, cam, continuous interpolation
ECI2828-V2		8	8	1	16	10M	24+16/16+16	2	2	512	128k	1	1	1	1	-	245*139	point, line, arc, cam, continuous interpolation

Note: models of ECI2418B, ECI2618B, ECI2A18B, ECI2618BL, ECI2828-V2. + HW means they support precision control, for fly-shooting, precision dispensing, etc.

Interfaces

1

PIN No.	Name	Description
1	H-5V	Power for Handwheel
2	HA-	Encoder Phase A
3	HB-	Encoder Phase B
4	HEMGN	Emergency Stop
5	NC	-
6	HX1	Select X1 Ratio
7	HX10	Select X10 Ratio
8	HX100	Select X100 Ratio
9	HSU	Select Axis 3
10	NC	-
11	EGND	External Power Ground
12	NC	-
13	HSZ	Select Axis 2
14	HSY	Select Axis 1
15	HSX	Select Axis 0

PIN No.	Name	Description	PIN No.	Name	Description
1	EGND	External Power Ground	14	OVCC	+24V Out - better only Servo IO
2	IN24-29/ALM	IN, better do Drive Alarm	15	Reserved	Reserved
3	OUT16-21/ENABLE	OUT, better do Drive Enable	16	IN30-35/INP0S	IN (better do on-position)
4	EB-	Encoder Input	17	EA+	Encoder Input
5	EZ-	Encoder Input	18	EB+	Encoder Input
6	+5V	Encoder Input	19	EZ+	Encoder Input
7	Reserved	Power Output	20	GND	Digital Ground
8	DIR+	Reserved	21	GND	Digital Ground
9	GND	Servo/Stepper Directional Out	22	DIR-	Servo/Stepper Directional Out
10	PUL-	Digital Ground	23	PUL+	Servo / Stepper Pulse Output
11	Reserved	Servo/Stepper Pulse Out	24	GND	Digital Ground
12	GND	Reserved	25	Reserved	Reserved
13		Digital Ground	26	Reserved	Reserved

▲ Handwheel (DB15 Female Head) ECI2418B / ECI2618B

A Pulse & Encoder (DB26 Female Head) ECI2418B / ECI2618B

Note: refer to "User Manual" for more models and details.

9

ECI3000 Series

ECI3000 economical multi-axis motion control card is one pulse type network card. Itself supports max 8 axes, 12 axes motion control can be extended to realize simple control, linear, circular, helical interpolation, etc.

Applications: within 10 pulse axes -- electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing equipment, assembly line, etc.

Functional Features

- Axis: up to 12-axis (include virtual-axis)
- ► IO: up to 48 INs & 32 OUTs
- ► Communication: RS232, EtherNET
- Analog: up to 4 ADs & 2 DAs, max 128 ADs & 64 DAs by ZCAN
- Pulse Mode: directional + pulse / dual-pulse
- Functions:
 - 01. support encoder input, which can be configured as handwheel mode.
 - 02. max 256 INs & 256 OUTs synchronously can be expanded by ZCAN.
 - 03. axis position limit, origin signal can be configured as any IN.
 - 04. max output current is 300mA, which can directly drive some solenoid valve.

05. support electronic cam, electronic gear, position latch, synchronous follow, virtual axis, etc.

- 06. support multi-file & multi-task programming.
- 07. a variety of encryption methods to protect user's program.
- ► Performance:
 - 01. max pulse output frequency can reach 10MHz.
 - 02. support up to 12 axes for linear, circular, helical interpolation.
 - 03. support multi-machine independent continuous interpolation.

Models

Model	Image	Axis	En- coder	Total Axes	Pulse Fre quency	Inner IN and OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	232	422	485	NET	USB	Size (mm)	Functional Description
ECI3608) 1111111111	6	6+1	12	10M	40+6/16+12	4	2	128	4k	1	1	-	-	1	-	292*188	point, line, arc, cam, continuous interpolation, robotic arm commands
ECI3808	111111111	8	8+1	12	10M	40+8/16+16	4	2	128	4k	1	1	-	-	1	-	292*188	point, line, arc, cam, continuous interpolation, robotic arm commands

Interfaces

PIN No.	Name	Description	PIN No.	Name	Description
1	EGND	External Power Ground	13	GND	Internal 0V
2	IN40-47/ALM	General IN, better do Drive Alarm	14	OVCC	+24V
3	OUT16 18/ENABLE	OUT, better do Drive Enable	15	OUT17 19/CLR	OUT, better do Drive Alarm Clear
4	EA-	Encoder Phase A -	16	Reserved	Reserved
5	EB-	Encoder Phase B -	17	EA+	Encoder Phase A +
6	 F7-	Encoder Phase Z	18	EB+	Encoder Phase B +
-			19	EZ+	Encoder Phase Z +
/	Internal +5V Power	Internal +5V Power	20	GND	Internal 0V
8	Reserved	Reserved	21	GND	Internal 0V
9	DIR+	Directional Differential +	22	DIR-	Directional Differential -
10	GND	Internal 0V	23	PUL+	Pulse Differential -
11	PUL-	Pulse Differential -	24	GND	Internal 0V
12	Reserved	Reserved	25	Reserved	Reserved

▲ Pulse & Encoder (DB25 Female Head) ECI3000 Series

Note: refer to "User Manual" for more models and details.

ECI382X Card -- Bus

ECI382X economical multi-axis motion control card is one bus and modular type network card. There are 4-12 axes for point, linear, circular, helical interpolation, etc., and it supports PSO function for vision fly-shooting, dispensing control, laser energy control.

Applications: within 12 axes (pulse & bus) -- 3C electronics, semiconductor equipment, dispensing equipment, non-standard equipment, etc.

Functional Features

- Axis: 4-12 axes
- ▶ 10: 26 INs & 18 OUTs
- Communication: RS232, EtherNET, EtherCAT
- Analog: 2 ADs & 2 DAs, max 256 ADs & 128 DAs after expansion
- Pulse Mode: directional + pulse / dual-pulse
- Functions:
 - 01. EtherCAT synchronized period is 1ms.
 - 02. support encoder input, which can be configured as handwheel mode.
 - 03. max 4096 isolated INs & 4096 isolated OUTs synchronously can be expanded by EtherCAT.
 - 04. max output current is 300mA, which can directly drive some solenoid valve.

05. support electronic cam & gear, position latch, synchronous follow, virtual axis, etc.

- 06. axis position limit, origin signal can be configured as any IN.
- 07. a variety of encryption methods to protect user's program.
- Performance:
 - 01. max pulse output frequency can reach 10MHz.
 - 02. support up to 16 axes (include virtual-axis) for linear interpolation, circular,
 - interpolation, helical interpolation, continuous interpolation.
 - 03. support 1D/2D/3D PSO function for vision fly-shooting, dispensing control, laser energy control.

Models

Model	lmage	Axis	En- coder	Total Axes	Pulse Fre quency	Inner IN and OUT	Inner AD	Inner DA	Axis Motion Buffer	Space	Task	232	422	485	NET	Size (mm)	Functional Description
ECI3428		4	2+2	16	10M	24+2/16+2	2	2	512	128k	1	1	1	1	1	205*135	point, line, arc, cam, continuous interpolation,
ECI3628		6	2+2	16	10M	24+2/16+2	2	2	512	128k	1	1	1	1	1	205*135	point, line, arc, cam, continuous interpolation,
ECI3828)	8	2+2	16	10M	24+2/16+2	2	2	512	128k	1	1	1	1	1	205*135	point, line, arc, cam, continuous interpolation,
ECI3A28) 	10	2+2	16	10M	24+2/16+2	2	2	512	128k	1	1	1	1	1	205*135	point, line, arc, cam, continuous interpolation,
ECI3C28)	12	2+2	16	10M	24+2/16+2	2	2	512	128k	1	1	1	1	1	205*135	point, line, arc, cam, continuous interpolation,

Interfaces

PIN No.	Name	Description	PIN No.	Name	Description
1	EGND	External Power Ground	14	OVCC	E24V Output (better only for Servo IO)
2	IN24/ALM	General IN, better do Drive Alarm	15	Reserved	Reserved
3	OUT16/ENABLE	General OUT, better do Drive Enable	16	Reserved	Reserved
4	EA-	Encoder Input	17	EA+	Encoder Input
5	EB-	Encoder Input	18	EB+	Encoder Input
6	EZ-	Encoder Input	19	EZ+	Encoder Input
7	+5V	Internal +5V Power Output	20	GND	Internal Power Ground
8	Reserved	Reserved	21	GND	Internal Power Ground
9	DIR+	Servo/Stepper Directional Out	22	DIR-	Servo/Stepper Directional Out
10	GND	Internal Power Ground	23	PUL+	Servo/Stepper Pulse Out
11	PUL-	Servo/Stepper Pulse Out	24	GND	Internal Power Ground
12	Reserved	Reserved	25	Reserved	Reserved
13	GND	Internal Power Ground	26	Reserved	Reserved

▲ Pulse & Encoder (DB26 Female Head)

Note: refer to "User Manual" for more models and details.

PC-Based Motion Control Card

XPCIE1032H

PCI Bus Control Card System Structure

XPCIE Control Card System Structure

Models

Model	Image	Axis	En- coder	Total Axes	Pulse Fre quency	Inner IN and OUT	PWM	High- Speed IN	High- Speed OUT	Motion Buffer	ECAT	Size (mm)	Functional Description
PCIE464-AX16		16	3	64	10M	8+16/8+16	8	8	8	4096	1	144*120	point, line, arc, cam, continuous interpolation, robot
PCIE464-AX32		32	3	64	10M	8+16/8+16	8	8	8	4096	1	144*120	point, line, arc, cam, continuous interpolation, robot
PCIE464-AX64		64	3	64	10M	8+16/8+16	8	8	8	4096	1	144*120	point, line, arc, cam, continuous interpolation, robot

Interfaces

PCIE464 Motion Control Card Configuration Solution

 Configuration	Name	Specification	Description	Image	Number
	Wiring Board	EXDB37M-37	Db37 wiring board		1
Optional Accessories	Shielded Cable	DB37-150	DB37 cable, chip male-to-male	S.	2
Accessories for Expanding IO	Wiring Board	ACC37-7103	16 IN & 16 OUT wiring board after changing from IDC40 to Db37		1
	Adapter Cable	ZP72-02	flat cable from 40P plug to DB37 female head		1

PCIE464

PCIE464 motion control card is one EtherCAT and pulse type card that is with PCIE interface. It can control several stepper motors or digital servo motors. And it can achieve many functions, multi-axis point motion, interpolation, handwheel control, encoder position detection, IO control, position latch, etc.

Applications: high-speed & high-precision -- 3C electronics, detection equipment, semiconductor equipment, SMT processing, laser, optical communication equipment, lithium & photovoltaic, non-standard automatic equipment, etc.

Functional Features

- Axis: 64 axes (EtherCAT)
- ► IO: 8 INs & 8 OUTs (more IO, please use with ACC37 together)
- ► Communication: PCle
- Analog: max 128 ADs & 64 DAs after ZCAN expansion
- Pulse Mode: directional + pulse / dual-pulse
- Functions:
 - 01. support encoder input, which can be configured as handwheel mode.
 - 02. max 4096 INs & 4096 OUTs can be reached by EtherCAT / CAN.
 - 03. axis position limit, origin signal can be configured as any IN.
 - 04. max output current is 300mA, which can directly drive some solenoid valve.
 - 05. electronic cam & gear, position latch, synchronous follow, virtual axis, etc.

- 06. support ZBasic multi-task running (real-time program).
- support card inner C language real-time program running.
- 07. PSO modes: high-speed vision fly shooting, dispensing, laser, etc.
- 08. "power-off storage": encryption & protect user's program.
- 09. valid operation systems: Windows7, Windows10, Windows11, Linux.
- Performance:
 - 01. 16-axis EtherCAT fastest refresh cycle is 100µs.
 - 02. max pulse output frequency can reach 10MHz.
 - 03. support max 16 axes for linear, circular, helical, elliptical interpolation.
 - 04. support multi-machine independent continuous interpolation.
 - 05. support hybrid interpolation of EtherCAT + pulse axes.

PCI Bus Motion Control Card EtherCAT

PCI high-performance multi-axis card is one bus type control card (EtherCAT & RTEX). Itself supports max 64 axes to realize complex continuous trajectory control, like, linear, circular, helical, elliptical interpolation.

Applications: robot (SCARA, Delta, 6-joint), electronic semiconductor equipment (detection, assembly, locking, soldering), dispensing, laser, non-standard, printing & packaging, textile & garment, stage entertainment equipment, medical equipment, assembly line, etc.

Functional Features

- Axis: 64 axes (EtherCAT), 32 axes (RTEX)
- ► IO: 8 INs & 8 OUTs
- ► Communication: PCI
- Analog: max 128 ADs & 64 DAs after ZCAN expansion
- ► Functions:
 - 01. support encoder input, which can be configured as handwheel mode.
 - 02. max 4096 INs & 4096 OUTs can be reached by EtherCAT / CAN.
 - 03. axis position limit, origin signal can be configured as any IN.
 - 04. max output current is 300mA, which can directly drive some solenoid valve.
 - 05. electronic cam & gear, position latch, synchronous follow, virtual axis, etc.

- 06. support pulse closed-loop, pitch compensation.
- 07. support multi-file & multi-task programming.
- 08. a variety of encryption methods to protect user's program
- 09. support power failure detection & power failure storage.
- Performance:
 - 01. 16-axis EtherCAT fastest refresh cycle is 100µs.
 - 02. support max 16 axes for linear, circular, helical, elliptical interpolation.
 - 03. support multi-machine independent continuous interpolation.
 - 04. support hybrid interpolation of EtherCAT/RTEX + pulse axes.

Models

Model	lmage	Axis	En- coder	Total Axes	Inner IN and OUT	Axis Motion Buffer	Space	Task	Power Down Store	ECAT	RTEX	Size (mm)	Functional Description	Optional Acessories
PCI406E		6	1	64	8/8	512	1920k	22	8000	1	-	158*120	point, line, arc, cam, continuous interpolation, robot	adapter cable (ZP72-02) shielded cable (DB37-150) wiring board (EXDB37M-37)
PCI408E		8	1	64	8/8	512	1920k	22	8000	1	-	158*120	point, line, arc, cam, continuous interpolation, robot	adapter cable (ZP72-02) shielded cable (DB37-150) wiring board (EXDB37M-37)
PCI412E		12	1	64	8/8	512	1920k	22	8000	1	-	158*120	point, line, arc, cam, continuous interpolation, robot	adapter cable (ZP72-02) shielded cable (DB37-150) wiring board (EXDB37M-37)
PCI464-16		16	1	64	8/8	512	1920k	22	8000	1	1	158*120	point, line, arc, cam, continuous interpolation, robot	adapter cable (ZP72-02) shielded cable (DB37-150) wiring board (EXDB37M-37)
PCI464-32		32	1	64	8/8	512	1920k	22	8000	1	1	158*120	point, line, arc, cam, continuous interpolation, robot	adapter cable (ZP72-02) shielded cable (DB37-150) wiring board (EXDB37M-37)
PCI464		64	1	64	8/8	512	1920k	22	8000	1	1	158*120	point, line, arc, cam, continuous interpolation, robot	adapter cable (ZP72-02) shielded cable (DB37-150) wiring board (EXDB37M-37)

Interfaces

PCI464

PCI464 Motion Control Card Configuration Solution

	Configuration	Name	Specification	Description	Image	Numbe
	Ontional	Wiring Board	EXDB37M-37	Db37 wiring board	2	1
and the second sec	Accessories	Adapter Cable	ZP72-02	flat cable from 40P plug to DB37 female head		1
	for Expanding to	Shielded Cable	DB37-150	DB37 cable, chip male-to-male	SQ.	1

XPCI Pulse Motion Control Card

XPCI economical motion control card is one pulse type card that is with PCI interface. Itself supports 4-12 axes, it can control several stepper motors or digital servo motors. And it can achieve many functions, multi-axis point motion, interpolation, trajectory planning, IO control, etc.

Applications: electronic manufacturing detection equipment, semiconductor equipment, dispensing, LED manufacturing detection equipment, medical equipment, laser, non-standard equipment, etc.

XPCI1400 Function Features:

- Axis: 4 axes
- ► IO: 36+16 INs / 12+16 OUTs
- Pulse Mode: directional + pulse / dual-pulse
- ► Pulse Frequency: 5MHz
- Functions:
- 01. machine control signals IN: +/-EL, ORG, +/-SD, optoelectronics isolation.
- 02. max output current is 300mA, which can directly drive some solenoid valve.
- 03. electronic cam, electronic gear, synchronous follow, virtual axis, etc.
- 04. support linear, circular, helical interpolation.
- 05. support pitch compensation.
- 06. support several PC development languages, C#/C++/LabVIEW,etc.
- 07. a variety of encryption methods to protect user's program

XPCI1C00 Function Features:

- ► Axis: 12 axes
- ► 10: 49 INs & 32 OUTs
- Pulse Mode: directional + pulse / dual-pulse
- ► Pulse Frequency: 5MHz
- Functions:
 - 01. machine control signals IN: +/-EL, ORG, +/-SD, optoelectronics isolation.
 - 02. max output current is 300mA, it can directly drive some solenoid valve.
 - 03. electronic cam, electronic gear, synchronous follow, virtual axis, etc.
 - 04. support linear, circular, helical interpolation.
 - 05. support pitch compensation.
 - 06. support several PC development languages, C#/C++/LabVIEW,etc.
 - 07. a variety of encryption methods to protect user's program
 - 08. 1D/2D/3D PSO: vision fly-shooting, dispensing & laser energy control.

Models

Model	Image	Axis	En- coder	Total Axes	Pulse Fre quency	Inner IN and OUT	PWM	High- Speed IN	High- Speed OUT	Motion Buffer	ECAT	Size (mm)	Functional Description
XPCI0032		-	-	-	-	16/16	-	-	-	-	-	120*92	IO control, PC "Ethenet" can be configured as ECAT
XPCI1400		4	-	4	5MHz	36+16/12+16	-	-	-	128	-	120*92	point, line, arc, cam, continuous interpolation, robot
XPCI1C00		12	4+1	12	5MHz	49/32	2	-	-	128	-	155*108	point, line, arc, cam, continuous interpolation, robot

Note: above cards should be used together with MotionRT7 software.

Interfaces

XPCI1400 Motion Control Card Configuration Solution

Configuration	Name	Specification	Description	Image	Number
Standard	Wiring Board	ACC68	SCSI68 wiring board		1
Configuration	Shielded Cable	SCSI68-100/ SCSI68-200	DB68 cable, chip male-to-male	P	1
Configuration	Name	Specification	Description	Image	Number
Ontional	Wiring Board	EXDB37M-37	Db37 wiring board		1
Accessories	Adapter Cable	ZP72-02	flat cable from 40P plug to DB37 female head		1
	Shielded Cable	DB37-150	DB37 cable, chip male-to-male	Se .	1

XPCI1C00 Motion Control Card Configuration Solution

Configuration	Name	Specification	Description	Image	Number
Standard	Wiring Board	ACC-1C00	SCSI68 wiring board		2
Configuration	Shielded Cable	VHDCI68-100/VHDCI68-200	68 cable, chip male-to-male (VHDCI68 to SCSI68)		2
Configuration	Name	Specification	Description	Image	Number
Ontional	Wiring Board	EXDB37M-37	Db37 wiring board	2	1
Accessories	Adapter Cable	ZP72-02	flat cable from 40P plug to DB37 female head		1
tor Expanding to	Shielded Cable	DB37-150	DB37 cable, chip male-to-male	S.	1

Models

Model	Image	Axis	En- coder	Total Axes	Pulse Fre quency	Inner IN and OUT	PWM	High- Speed IN	High- Speed OUT	Motion Buffer	ECAT	Size (mm)	Functional Description
XPCIE1032H		64	2	64	500kHz	16/16	4	8	16	128	1	90*106	point, line, arc, cam, continuous interpolation, robot
XPCIE1028		4	2	64	10MHz 500kHz	12+18/16+18	4	8	16	128	-	120*106	point, line, arc, cam, continuous interpolation, robot

Note: above cards should be used together with MotionRT7 software.

Interfaces

XPCIE1028 Vision Screening Machine Solution

XPCIE1028 Motion Control Card Configuration Solution

Configuration	Name	Specification	Description	Image	Number
Ontional	Wiring Board	EXDB37M-37	Db37 wiring board] anns	1
Accessories	Adapter Cable	ZP72-02	flat cable from 40P plug to DB37 female head		1
for Expanding to	Shielded Cable	DB37-150	DB37 cable, chip male-to-male	50	1

XPCIE Motion Control Card

XPCIE economical motion control card is one EtherCAT and pulse type card that is with PCIE interface. Itself supports 6-64 axes to achieve linear, circular, helical interpolation, electronic card, electronic gear, synchronous follow, virtual axis, robot etc.

Applications: high-speed & high-precision -- 3C electronics, detection equipment, semiconductor equipment, SMT processing, laser, optical communication equipment, lithium & photovoltaic, non-standard automatic equipment, etc.

XPCIE1032H Function Features:

- Axis: max 64 axes (4 single-ended pulse outputs)
- ► IO: 16 INs / 16 OUTs
- Pulse Mode: directional + pulse
- ► Pulse Frequency: 500KHz
- ► Functions:
- 01. EtherCAT communication, lowest synchronous period is 500us.
- 02. max 512 isolated inputs and 512 isolated outputs by EtherCAT modules.
- 03. encoder position measurement can be set as handwheel input mode.
- 04. electronic cam, electronic gear, synchronous follow, virtual axis, etc.
- 05. support linear, circular, helical interpolation.
- 06. support several PC development languages, C#/C++/LabVIEW,etc.
- 07. support multi-file & multi-task programming.
- 08. a variety of encryption methods to protect user's program
- 09. 1D/2D/3D PSO function for vision fly-shooting, dispensing & laser energy control.

XPCIE1028 Function Features:

- XPCIE1028 Function Features:
- Axis: 4 axes (1 differential pulse OUT + 3 single-ended pulse OUTs)
- ► IO: 12+18 INs / 16+18 OUTs
- Pulse Mode: directional + pulse / dual-pulse
- Pulse Frequency: 10MHz/500KHz
- Functions:
- 01. specialized for optical / disk screening machine.
- 02. 16 hardware position comparison high-speed outputs for vision fly-shooting detection, screening (blowing and outputting).
- 03. 8 high-speed latch INs to record materials' position.
- 04. specialized axis interface is for controlling 10MHz pulse output and encoder measurement.
- 05. support electronic cam, linear, circular, helical interpolation.

MINIPCIE1016EH

MINIPCIE1016H motion control card is one EtherCAT card that is with MINIPCIE interface. Itself supports 64 axes at most to achieve linear, circular, helical interpolation, electronic cam, electronic gear, synchronous follow, virtual axis, robot etc.

Applications: high-speed & high-precision -- 3C automation line, semiconductor equipment, SMT processing, new energy, laser, non-standard automatic equipment, etc

System Structure

Functional Features

- 01. support max 64 axes motion control.
- 02. max 512 INs & 512 OUTs can be reached by EtherCAT.
- 03. support linear, circular, helical, and continuous interpolation.
- 04. electronic cam & gear, position latch, synchronous follow, virtual axis, etc.
- 05. support pulse closed-loop, pitch compensation.
- 06. support multi-file & multi-task programming.
- 07. a variety of encryption methods to protect user's program

Provide Complete "Vision Screening Machine Motion Control Solution"

Break the Industry "Velocity" Bottleneck -- Reach 15000+pcs/min IO Triggering Detection Speed!

XPCIE1028 motion control card can be used in full-automatic CCD optical screening machine. And Zmotion provides one complete debugging software specialized for screening machine, which can reach 15000+pcs/min IO triggering detection speed. It only needs to set parameters, and uses together with camera and vision processing software, then it can realize full-automatic CCD vision screening. In this way, development period is shortened, and cost is reduced.

视觉筛选机	接动堂 💽 保护时间 0.000 自动单次 清整 💽 🛄
A 102	通道资源 withing 1 mailing 1
E 40.00	
10 40418 T	进行数据
✿ #####	1994年王治公司 1 1494执行计数 1 1994做过计数 1
e enaie	通用模式 10回点 - 7 形地式: PC MODBUS SET2 (1884C)编号, 44编号)
CS WRATE	通讯和独 -1 2 下和信式: PC_MODBUS_SET (199412)編号)
e otta	Revenue annumit 0 us calebra defancia 0 us Colonia
	0000 PARM 0000 BARH 0000 0000 0000
	инин но у на
	(10.000) 10.000 (10.000) 10.000 (10.000) 11.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.00 (10.000) 11.0000 (10.000) 11.000 (10.000) 11.0000 (10.000) 11.0000 (10.000) 11.0000 (10.000) 11.0000 (10.000) 11.0000 (10.000) 11.0000 (10.000) 11.0000 (10.000) 11.0000 (10.000) 11.0000 (10.000) 11.0000 (10.000) (10.000) 11.0000 (10.000) 11.0000 (10.000) 11.0000 (10.000) (10.000) (10.000) (10.000) (10.000) (10.000) (10.000) (10.000) (10.

Functions Introduction

▲ 主作語	通道设定 和机路数 7 排料路数 1
3 电机参数	20100001280 1 0000022280 1 00000002280 1
◎ 相称说觉	运行数据
✿ 招料设置	排料下发计数 1 排料执行计数 1 排料跳过计数 1
■ 硬件连用	道讯模式 IO模式 * □ 下发编式: PC_MODBUS_SET2 (排料口编号, 料编号)
建筑的数 篇	1 🔮 下水格式: PC_MODBUS_SET (福和口編編)
匣 10状态	
	2128月月 - 日小尺寸 0.000 日大尺寸 0.000 回量尺寸 0.000
	光时进程比例 80.0 % 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 01. Channel: set how many cameras, air valves.
- 02. Operation Data: watch how many detected & operated.
- 03. Communication Mode: set how to communicate with vision
- 04. Sample Space: set how long sample once
- 05. Heartbeat Detection: control vision & screening
- 06. Filtering Size: sense & filter materials' size
- 07. Camera Feedback IO & Report Actively: feedback the signal for control interaction after the signal is triggered by camera. 08. Fiber Offset Ratio: set the ratio of fiber physical distance offset 09. Debugging: manually debug -- operate turntable axis

Screening Machines

ZMIO310-ECAT

EtherCAT Expansion Module

ZCAN Expansion Module

Power (24V,1A)

ZMIO310 Expansion Module

Zmotion[®]

EtherCAT Expansion Module

EtherCAT expansion modules, they can expand multiple pulse axes and IO.

Functional Features

- Axis: 8 pulse axes can be expanded at most
- ► IO: up to 16 inputs & 16 outputs
- ► Performance:
 - 01. EtherCAT fastest refresh period is 250µs.

Models

Model	Image	Axis	Encoder	Total Axes	Inner IN and OUT	ECAT IN/ECAT OUT	Size (mm)	Functional Description
EIO1616MT		-	-	-	16/16	1/1	143*107	Module Mode: EIO1616M Module with Cover: EIO1616MT
EIO16084	0-0-0-0-**) 6	4	4	4	16/8	1/1	170*133	4-Axis Axis Expansion
EIO24088-V2	0000000 E	8	8	8	24/8	1/1	210*147	8-Axis Axis Expansion

Interfaces

EIO24088-V2

ZMIO310 Expansion Module

ZMI0310 expansion module is one vertical module, it supports expanding IO and AIO. One coupler supports up to 16 sub-modules.

Functional Features

- ► IO: one single coupler supports 256 inputs / 256 outputs at most.
- AIO: one single coupler supports 32 ADs / 32 DAs at most.

Models

Model	Image	Digital IN	Digital OUT	AD	DA	Communication	Size (mm)	Functional Description
ZMIO310-CAN		-	-	-	-	ZCAN	108*32*95mm	ZCAN Expansion Module
ZMIO310-ECAT		-	-	-	-	ECAT IN/ECAT OUT	108*32*95mm	ECAT Communication Module
ZMIO310-16DI		16	-	-	-	-	108*32*95mm	Input Module (NPN/PNP)
ZMIO310-16DO		-	16	-	-	-	108*32*95mm	Output Module (NPN)
ZMIO310-16DOP		-	16	-	-	-	108*32*95mm	Output Module (PNP)
ZMIO310-4AD		-	-	4	-	-	108*32*95mm	AD Module (16bit)
ZMIO310-4DA		-	-	-	4	-	108*32*95mm	DA Module (16bit)

Interfaces

ZMIO310 EtherCAT Bus Module

ZCAN Expansion Module

ZCAN expansion modules, they can expand 2 pulse axes (at most) and IO.

Functional Features

Axis: 2 pulse axes can be expanded at mbst IO: 16 INs & 16 OU

IO: 16 INs & 16 OUTs / 32 INs & 32 OUTs / 64 INs & 64 OUTs (PCB/module/cover type)

Models

Model	Image	Axis	Encoder	Total Axes	Inner IN and OUT	AD	DA	Size (mm)	Functional Description
ZIO0808		-	-	-	8/8	-	-	98*72	Module Type: ZIO0808M
ZIO0016		-	-	-	0/16	-	-	98*72	Module Type: ZIO0016M
ZIO1608		-	-	-	16/8	-	-	126*99	Module Type: ZIO1608M
ZIO1616		-	-	-	16/16	-	-	142*107	Module Type:ZIO1616M Module with Cover: ZIO1616MT
ZIO1616-PNP		-	-	-	16/16	-	-	142*107	Module Type: ZIO1616M-PNP
ZIO1632		-	-	-	16/32	-		192*107	Module Type:ZIO1632M Module with Cover: ZIO1632MT
ZIO3232MT	1	-	-	-	32/32	-	-	192*109	
ZIO6464MT		-	-	-	64/64	-	-	208*100	-
ZAI00802		-	-	-	-	8 (12bit)	2 (12bit)	120*72	Module Type: ZAIO0802M
ZIO16082		2	2	2	16/8	-	-	126*106	Module Type: ZIO16082M

Interfaces

HMI Solutions

HMI Display Solution 1: Open CNC

HMI Display Solution 2: Open SCARA

SCARA Robotic Arm

Zmotion[®]

HMI

ZHD HMI is one open programmable teach pendant that supports "touch screen". Develop interface program by ZBasic in ZDevelop, and it can online debugging.

Functional Features

- ▶ Button: up to 47 for ZHD300/ZHD300X ▶ Functions:
- Communication: EtherNET
- Protocol: MODBUS / custom
- 01. support touch screen programming02. it is with "emergency stop" button
- 03. ZHD400 can be used together with all kinds of controllers, but ZHD300X/ZHD400X/ZHD500X only match with controllers that support ZHMI function.

Models

Model	Image	Resolution	Size (mm)	Button	Emer- gency Stop	Valid Protocol	Functional Description
ZHD300X	Ś	480*272	280*131	47	YES	ZMC HMI Protocol	it supports touch screen, and can be used with button and touch. But the controller must support ZHMI function, and the development software ZDevelop must be above V2.70.
ZHD400		800*480	230*165	18	YES	MODBUS Custom Protocol	it supports touch screen, and can be used with button and touch.
ZHD400X		800*480	230*165	18	YES	ZMC HMI Protocol	it supports touch screen, and can be used with button and touch. But the controller must support ZHMI function, and the development software ZDevelop must be above V2.70.
ZHD500X		1024*600	313*237	16	YES	ZMC HMI Protocol	it supports touch screen, and can be used with button and touch, power is supplied by POE. But the controller must support ZHMI function, and the development software ZDevelop must be above V3.10.

Interfaces

PIN No.	Name	Description
1	TX+	Send Data + (Tranceive Data+)
2	TX-	Send Data - (Tranceive Data-)
3	RX+	Receive Data + (Receive Data +)
4	n/c	-
5	n/c	-
6	RX-	Receive Data - (Receive Data -)
7	n/c	-
8	n/c	-
-	Red Line	24V
-	Black Line	0V
-	Purple Line	Emergency Stop Signal

▲ Rj45 Crystal Head (ZHD300X, ZHD400, ZHD400X)

Note: ZHD500X power supply is POE power, it needs to use the equipment that is with POE function.

Zmotion[®]

HMI Display Solution 3: 3-Axis SCARA Intelligent Locking

设备参数			锁(寸结果							拍照照片		主Mark拍照
当前速度	0%		序号	扭矩 (kgf.cm)	圈数(r)	状态	NG 次数	浮高 高度	锁付 高度	锁付 时间			
		Ē	9	1.18	1.89	OK	0	0.00	10.81	2.71	1 Provide		
机种文件	工件		10	1.18	1.89	OK	0	0.00	10.81	2.71			
			11	1.18	1.89	OK	0	0.00	10.81	2.71			
绑定条码	无		12	1.18	1.89	OK	0	0.00	10.81	2.71			Longer and
W	-		13	1.18	1.89	OK	0	0.00	10.81	2.71			
当刖余哟	元		14	1.18	1.89	OK	0	0.00	10.81	2.71			副Mark拍照
生产统计										重置		0	17
≏品总数	243	产品不良		0	产品	良率	100%	节打	自 2	.47s		0	1 51
唢付总数	1944	锁付不良		6	锁付	良率	99%	滑到	₹	1			
抛料次 数	6	拍照NG		13	扫码	ING	0	浮る	高	5			

Reference And Learning Materials

Zbasic Programming Manual

ZHMI Programming Manual

ZPLC Programming Manual

Zvision Programming Manual

Zmotion Articles

正运动小助手 (学习园地)

备忘录

Shenzhen Zmotion Technology Co.,Ltd

深圳市正运动技术有限公司

Tel: 0755-2606 6955 Fax: 0755-2606 6955

Website: www.zmotionglobal.com

Phone: +86 19925228195 Marketing: zlm@zmotion.com.cn Technical Support: tech_1@zmotion.com.cn

Address: 3-7 floor, Building A1, Sunshine Industrial Zone, Hezhou Community, Baoan, Shenzhen, Guangdong, China

© All rights belong to Shenzhen Zmotion Technology Co.,Ltd.

正运动技术

正运动小助手(学习园地)